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Abstract

First-order methods are central to many algorithms in convex optimization. For
any differentiable function, first-order methods can be used to iteratively approach
critical points. This paper defines and describes the properties of a variety of first-
order methods, primarily focusing on gradient descent, mirror descent, and stochastic
gradient descent. The discussion includes descriptions of the classical algorithms as
well as some recent breakthroughs used to accelerate these methods. Central to these
breakthroughs is the use of momentum, linear coupling, and variance reduction. This
survey gives concise descriptions of the main ideas behind these recent developments,
explaining proofs of convergence from a conceptual standpoint.
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1 Introduction

1.1 Overview

Convex optimization, a field devoted to minimizing a convex function over a convex set,
has applications in a variety of fields including operations research, machine learning, and
economics. Convex optimization problems have a specific form for a convex set K and a
convex function f

min
x∈K

f(x)

There are a variety of ways to solve convex optimization problems. Often, we choose to
frame optimization problems as linear programs or integer programs, which can be solved
with methods such as the simplex method and ellipsoid method. Other times, it is often
more useful to employ iterative first and second-order techniques in order to achieve a fast
approximation. For this reason, innovations in powerful first-order methods such as gradient
descent, mirror descent, and stochastic gradient descent can play a crucial role in quickly
approximating a variety of problems.

1.2 Basic Convexity

The subject matter in this survey relies on the basic notions of convex sets and convex
functions. For our purpose, we will use the definitions from Nisheeth K. Vishnoi’s textbook
on optimization methods [1].

Definition 1 (Convex Set [1]). A set K ⊂ Rn is convex if, for every two points in K, the
line segment connecting them is contained in K. Equivalently,

λx+ (1− λ)y ∈ K

for x, y ∈ K,λ ∈ [0, 1].

Definition 2 (Convex Function [1]). A function f : K → R is convex if

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

for x, y ∈ K,λ ∈ [0, 1].

Intuitively, a convex set has the property that any point that lies between two points
x, y ∈ K, is also in K. Similarly, a convex function f has the property that any line
segment connecting two points on f is always above f . In this way, the space above a
convex function f defines a convex set. Convex functions are important for their shared
first-order and second-order properties. Because this paper focuses on first-order methods,
we will predominantly need the following first-order property of convex functions:

Claim 3 (First-order convexity [1]). If f is differentiable, then it is convex if and only if

f(y) ≥ f(x) + 〈∇f(x), y − x〉

for x, y ∈ K.
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Proof. We first show convexity implies the first-order condition. By definition, we have that:

f(λy + (1− λ)x) ≤ λf(y) + (1− λ)f(x),∀λ ∈ [0, 1], x, y ∈ K (1)

Rewriting, we have

f(y) ≥ f(x) +
f(x+ λ(y − x))− f(x)

λ
(2)

As λ→ 0, we have f(y) ≥ f(x) + 〈∇f(x), y − x〉.
Similarly, the first-order condition implies f is convex. Let z = λx+ (1− λ)y. Then we

get the following equations:

f(x) ≥ f(z) + 〈∇f(z), x− z〉 (3)

f(y) ≥ f(z) + 〈∇f(z), y − z〉 (4)

Multiply 3 by λ and 4 by 1− λ, we get

λf(x) + (1− λ)f(y) ≥ f(z) + 〈∇f(z), y − z〉 (5)

≥ f(z) + 〈∇f(z), λx+ (1− λ)y − z〉 (6)

Because 〈∇f(z), λx + (1 − λ)y − z〉 = 〈∇f(z), z − z〉 = 0, the result is the definition of
convexity:

λf(x) + (1− λ)f(y) ≥ f(λx+ (1− λ)y) (7)

We note that this claim implies that any first-order approximation of f is an underes-
timate for any other point y in the convex set K. Additionally, we also use the following
important claim from Vishnoi on critical points for convex function.

Claim 4 (Convex optimum [1]). For a differentiable convex function f : Rn → R and a
point x∗, the following are equivalent:

a. x∗ is a global minimum of f
b. x∗ is a local minimum of f
c. ∇f(x∗) = 0

Proof. We know that a → b is true for any global minimum. We also know that b → c is
true for any local minimum. To show c→ a is true, we assume that ∇f(x∗) = 0. Then we
have that f(y) ≥ f(x∗) + 〈∇f(x∗), y − x〉 = f(x∗). Thus, if x∗ has ∇f(x∗) = 0, we have
that all other points y have f(y) ≥ f(x∗). Thus, x∗ is a global minimum [1].

Using these properties of convexity, we have the tools that we need to describe first-order
methods for minimizing convex functions.
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2 Gradient Descent

2.1 Overview

A natural solution to finding the minimum of a convex function is to decrease the objective
function f until we arrive at a minimum.

Assuming f is convex, we can use its first derivative to minimize it over a convex set.
Consider the problem where f is differentiable and we want to find a sequence of points
x1 . . . xT where f(x1) ≥ f(x2) . . . ≥ f(xT ) ≥ f(x∗). Since ∇f(x1) points in the direction
where f grows the fastest at x1, we can use −∇f(x1) to find the direction where fdecreases
the fastest. In particular, subtracting the first derivative as follows moves us in the approx-
imate direction of the minimum:

xt+1 = xt − η∇f(xt)

This method of using ∇f to approach the optimum of a function f is what is commonly
referred to as gradient descent [2]. Gradient descent cannot find the exact minimum, but
we use it iteratively to find an ε-close approximate solution. Additionally, gradient descent
is independent of the dimension of the problem, making the convergence rate much more
efficient in high dimensional space.

We use η to denote the learning rate, or the rate at which approach the approximate
minimum of f . The value of η must be chosen carefully, as a large learning rate may
cause cause us to skip over the optimum while a small learning rate can lead to many more
iterations before achieving convergence.

We show the full gradient descent method from Nesterov’s 2004 lectures in Algorithm 1
[2].

Algorithm 1 GD(x0, η, T ) [2]

1: Let x1 = x0

2: for t = 1 . . . T do
3: xt+1 = xt − η∇f(xt)
4: end for
5: return xT

2.2 Convergence

In order to bound the number of steps it takes for gradient descent to converge on f , we must
have some knowledge of the function’s gradient. Although there are a variety conditions
that can be imposed on f in order to show that gradient descent converges, the standard
proof relies on ||x0 − x∗|| ≤ D, for starting point x1, and the function f being L-smooth.

Definition 5 (L-smooth [1]). Assume that f is differentiable such that

||∇f(x)−∇f(y)|| ≤ L||x− y||

for any x, y ∈ K. Then we say f is L-Smooth.

We give a variation of Vishnoi’s proof, which uses the definition of L-smoothness to
prove the following theorem for the gradient descent algorithm.
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Theorem 6 (Vishnoi [1]). Gradient descent with learning rate 0 ≤ η ≤ 1
L needs T =

O(DLε ) iterations to achieve f(xT )− f(x∗) ≤ ε.

Proof Sketch. We start using a simple inequality that can be derived from f being L-Smooth:

f(x)− f(y) ≤ 〈y − x,∇f(y)〉+ L||x− y||2 (1)

Substituting xt and xt+1 into this inequality, we get the following after each iteration:

f(xt+1)− f(xt) ≤ 〈xt+1 − xt,∇f(xt)〉+ L||xt+1 − xt||2 (2)

From the gradient update rule, we know that xt+1 − xt = −η∇f(xt). We then assume
η = 1

2L :

f(xt+1)− f(xt) ≤ −
1

4L
||∇f(xt)||2 (3)

This inequality shows that the objective decreases by − 1
4L ||∇f(xt)||2 every step, under

the L-smoothness assumption. Intuitively, it suggests that the larger the gradient, the
faster we approach the optimum. Establishing this bound is central to proving the theorem,
and a variant of this inequality is needed in almost every gradient descent related proof.
Then, using the definition of convexity, we can bound the size of the gradient ||∇f(xt)|| by
f(xt)−f(x∗)
||xt−x∗|| , leading to the following:

f(xt+1)− f(xt) ≤ −
(f(xt)− f(x∗))2

4L||xt − x∗||2
(4)

Let D = ||x0 − x∗||2 and Θ = f(x0) − f(x∗). Notice that to halve the distance to x∗

from Θ
2i to Θ

2i+1 , we need to perform at most O(LD
22i

Θ ) steps. The total amount of halves

we need to achieve an ε-approximation is log Θ
ε . This gives us the following summation:

log Θ
ε∑

i=1

O(
LD22i

Θ
) = O(

LD2

ε
) (5)

Thus, we need T = O(LD
2

ε ) iterations to converge [1].

Throughout this survey, many convergence proofs will follow this same format. We first
use a bound on the gradient to ensure progress at each step, then telescope over all T steps
in order to bound the error f(xT ) − f(x∗) in terms of T . While the previous proof uses
the L-smooth bound to show convergence, it is known that gradient descent converges even
faster with stronger bounds. In particular, using the notion of σ-strong convexity, we can
achieve an even faster convergence rate.

Definition 7 (σ-strong convexity [1]). Assume that f is twice differentiable such that:

∇2f(x) � σ

∀x ∈ K. Then we say f is σ-strongly convex.
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Theorem 8 (Vishnoi [1]). If f is σ-strong convex and L-smooth, needs T = O(Lσ log 1
ε )

iterations to achieve f(xT )− f(x∗) ≤ ε.

Intuitively, this comes from the fact that when f has a large gradient, gradient descent
takes bigger steps to approach the minimum faster. We omit the proof for this theorem, as
it is just a variant of the proof for the L-smooth assumption.

3 Mirror Descent

3.1 Overview

Mirror descent is an iterative algorithm introduced by Nemirovski and Yudin in 1983 [3].
The algorithm is designed to minimize a convex function f with respect to an arbitrary
norm || · ||. Note that to minimize f in some vector space E , the mirror descent algorithm
must work in the dual space E∗ [4]. This is because any gradient ∇f(x) is defined in the
dual space E∗.

Note that previously, we did not have to work in the dual space as we used gradient
descent to minimize with respect to the Hilbert space H (`2 norm), where H∗ = H. Yet for
an arbitrary vector space E , the update step x− η∇f(x) may not be defined as x ∈ E and
∇f(x) ∈ E∗.

Thus, in order to approximate x∗ in the dual space, we must conduct the descent step in
the dual space E∗, and then map the result back into the primal space E with some map Φ.
After mapping the result back into the primal space, the result may not be in the feasible
region. Thus, we must project the result back into the feasible set K. We show a variant of
Beck and Teboulle’s version of the mirror descent method in Algorithm 2.

Algorithm 2 MD(x0, η,Φ, T ) [4]

1: Let x1 = x0

2: for t = 1 . . . T do
3: ∇Φ(yt+1) = ∇Φ(xt)− η∇f(xt)
4: xt+1 = ∇Φ∗(∇yt+1)
5: end for
6: return x̄ = 1

T

∑T
t=1 xt

Note that the mirror descent algorithm requires a map Φ(x) : K → R which is dif-
ferentiable and strongly convex on K. We denote Φ∗ as the conjugate of Φ, such that
Φ∗(y) = maxx∈K{〈x, y〉 −Φ(x)}. This conjugate function is needed in order to ensure xt+1

is projected back into the feasible region K after the transformation.
Mirror descent is also different from gradient descent in that we return x̄ instead of

xT . This is because progress is not guaranteed at every mirror descent step. Nonetheless,
convergence can still be ensured if we return the average of the previous T iterations.
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3.2 Mirror Descent as Generalized Gradient Descent

Beck and Teboulle give an alternative characterization of the mirror descent algorithm.
We first note that gradient descent can be generalized with the following update step with
respect to the `2 norm:

xt+1 = argminy∈K

{
∇f(xt)

T y +
1

2η
||y − xt||22

}
We can show that this generalization is equivalent to gradient descent by minimizing

with respect to y:

Proof.

0 = ∇f(xt)
T y

∂

∂y
+

1

2η
||y − xt||22

∂

∂y

0 = ∇f(xt) +
1

η
(y − xt)

1

η
(y − xt) = −∇f(xt)

y = xt − η∇f(xt)

By replacing the `2-norm in the generalized gradient descent step with any proximity
function, we can achieve a gradient descent algorithm for a different geometric manifold.
Assume that we choose to use generalized gradient descent with the Bregman divergence
proximity function.

Definition 9 (Bregman divergence [4]). Let Φ : K → R be a map such that Φ(y) ≥
Φ(x)〈∇Φ(x), y− x〉+ 1

2 ||x− y||
2. The Bregman divergence is a distance metric between two

points x and y defined as follows

BΦ(x, y) = Φ(x)− Φ(y)−∇Φ(y)T (x− y)

where BΦ(x, x) = 0 and BΦ(x, y) ≥ 1
2 ||x − y||2. Note that B(x, y) implies that B is

defined for any valid Φ.

Beck and Teboulle show that mirror descent is equivalent to generalized gradient descent
with the Bregman divergence metric, subject to a given map Φ [4].

Proof. Gradient descent with Bregman divergence is the following:

xt+1 = argminy∈K

{
∇f(xt)

T y +
1

η
BΦ(y, xt)

}
(1)

We take the derivative to find the optimality conditions:

0 ∈ η∇f(xt) +∇Φ(xt+1)− Φ(xt) +NK (2)

where NK is the normal cone of the closed convex set K. Rearranging terms, get the
following:

xt+1 ∈ (∇Φ +NK)−1(∇Φ(xt)− η∇(xt)) (3)
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Because Φ is differentiable and strongly convex, Beck and Teboulle get that (Φ +
NK)−1(z) = Φ∗(z). Thus gradient descent with the Bregman divergence metric is exactly
the same as mirror descent performed in one step:

xt+1 = ∇Φ∗(∇Φ(xt)− η∇f(xt)) (4)

Thus, the theorem is proved [4].

3.3 Mirror Descent as a Dual Method

In his 2014 paper, Zeyuan Allen-Zhu characterizes the mirror descent algorithm as a dual
method to gradient descent [5]. This characterization stems from the analysis of mirror
descent, which shows that the algorithm essentially uses lower-bounding hyper-planes to
iteratively find the minimum of a convex function f .

Specifically, note that by the first-order property of convexity, any gradient ∇f(x) es-
tablishes a lower-bounding hyper-plane on f . Thus, each xt in the mirror descent algorithm
can be seen as a point establishing a lower-bounding hyper-plane ∇f(xt) on f . Ultimately,
mirror descent returns the average of these queries x̄ in the hopes that the average of the
hyper-planes has ∇f(x̄) ≈ ∇f(x∗) = 0.

Using this intuition, we note that mirror descent can be seen as a dual method to gradient
descent. Specifically, while gradient descent improves with a larger gradient, the convergence
analysis shows that mirror descent improves when∇f is smaller. This is because when many
of the lower-bounding hyper-planes have a gradient close to zero, we can establish a tighter
bound on f .

3.4 Convergence

In order to prove the algorithms convergence, we will need to introduce the ρ-Lipschitz
upper-bound on the gradient.

Definition 10 (ρ-Lipschitz [5]). A function f is ρ-Lipschitz with respect to a norm || · || if
∀x ∈ K, g ∈ ∇f(x), ||g||2∗ ≤ ρ.

The norm || · ||∗ is the dual norm defined for ∇f ∈ E∗. The main proof relies on the
following Mirror Descent Lemma, which Allen-Zhu proves using the properties Bregman
divergence and the minimality of each mirror descent step. We omit the proof of the lemma
for conciseness.

Lemma 11 (Mirror Descent Lemma [5]). At each iteration t of mirror descent, we have
that ∀x ∈ K:

η(f(xt)− f(x)) ≤ η〈∇f(xt), xt − x〉 ≤
η2

2
||∇f(xt)||2∗ +B(xt, x)−B(xt+1, x)

Note that letting x = x∗, the Mirror Descent Lemma says that our error from the
optimum, f(xt) − f(x∗), is smaller than the decrease in the Bregman divergence at our
current iteration, B(xt, x

∗)−B(xt+1, x
∗), subject to some error proportional to the square

of the size of the gradient ||∇f(xt)||2∗.
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Theorem 12 (Allen-Zhu [5]). Assume f is convex and ρ-Lipschitz with B(x1, x
∗) ≤ D,

then mirror descent with η =
√
D

ρ
√
T

needs T = O(Dρ
2

ε2 ) iterations to achieve f(xT ) −
f(x∗) ≤ ε.

Proof Sketch. From the Mirror Descent Lemma, we can telescope over all 1 . . . T iterations

to show that ηT (f(x̄) − f(x∗)) ≤ T ρ2η2

2 + D. The proof is slightly intricate, and given in
Appendix A for conciseness. This inequality then implies that at iteration t, the distance
between the optimal x∗ and x̄ is bounded by the following:

f(x̄)− f(x∗) ≤ ρ2η

2
+

D

Tη
(1)

Letting η =
√

2D
L
√
T

:

ρ2η

2
+

D

Tη
=
ρ
√

2D

2
√
T

+
D
√
Tρ

T
√

2D
=
ρ
√

2D√
T

(2)

Therefore, we get that

T ≥ 2Dρ2

ε2
→ f(x̄)− f(x∗) ≤ ε (3)

Thus, the theorem is proved [5].

4 Accelerated First-Order Methods

4.1 Overview

In the previous sections, we show a roughly O( 1
ε ) convergence rate for gradient descent and

a roughly O( 1
ε2 ) convergence rate for mirror descent in the non-strongly convex case. The

question remains whether there are first-order methods with accelerated convergence rates.
Although such methods exist, the algorithms are more intricate and require much longer
proofs.

This section describes two accelerated methods that achieve O( 1√
ε
) convergence. The

first is Nesterov’s method, which was the first gradient descent method to achieve O( 1√
ε
)

convergence in 1983. The second method, introduced in 2014 by Zeyuan Allen-Zhu, is a
more intuitive algorithm that achieves O( 1√

ε
) convergence by combining mirror descent and

gradient descent steps.

4.2 Nesterov’s Method

It is possible to improve on gradient descent using Nesterov’s method [6]. Nesterov’s method
can be conceptualized as using the momentum from the previous point xt, when calculating
the next point xt+1.

At each iteration, Nesterov’s method first calculates the gradient descent step yt+1 as
an intermediary. It then sets xt+1 to be a linear combination of yt+1 with the gradient
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descent step yt from the previous iteration. This linear combination effectively incorporates
the gradient from the previous iteration in calculating xt. In fact, because this is done at
each iteration, Nesterov’s method is essentially factoring in the entire gradient history every
update! In this way, the algorithm is able to accelerate to a convex function’s minimum
with much fewer iterations.

The cleverness of Nesterov’s method lies in the choice of λ, which specifies how yt+1 and
yt are combined to form xt+1. We show the entire algorithm in Algorithm 3. Note that
as t → ∞, γt = 1. Thus, as we approach the minimum x∗, Nesterov’s method turns into
normal gradient descent and begins to ignore the gradient history.

Algorithm 3 Nesterov(x0, L, T ) [6]

1: Let λ1 = 1
2: Let x1 = y1 = x0

3: for t = 1 . . . T do

4: λt+1 =
1+
√

1+4λ2
t

2

5: γt = λt−1
λt+1

6: yt+1 = xt − 1
L∇(xt)

7: xt+1 = (1− γt)yt+1 + γtyt
8: end for
9: return xT

Although the idea behind Nesterov’s method is relatively intuitive, it is not immediately
obvious why his algorithm converges at a faster rate than normal gradient descent. Yet
improving on gradient descent, Nesterov’s method gives us a roughly O( 1√

ε
) convergence

rate!

Theorem 13 (Nesterov [6]). Assuming f is convex and L-smooth, Nesterov’s acceler-

ated gradient descent needs T = O(
√
LD√
ε

) iterations to achieve f(xT )− f(x∗) ≤ ε.

We omit the proof of Nesterov’s accelerated gradient descent method as the analysis is
not enlightening and involves at least a page of algebra. For this reason, Nesterov’s accel-
erated gradient descent method is often seen as an analytical trick, which lacks an intuitive
geometric interpretation. Nonetheless, Nesterov’s method is still crucial to the development
of more intuitive accelerated first-order methods. In particular, while Nesterov’s accelerated
gradient descent was the first method to achieve O( 1√

ε
) convergence for L-smooth convex

functions, more recent papers have used similar ideas to achieve the same convergence with
a more intuitive algorithm.

4.3 Linear Coupling

One of the weakest characteristics of gradient descent is that the algorithm always ap-
proaches the minimum of a function from above. This is because gradient descent is a
primal-only optimization method, which by ignoring the dual problem, never establishes a
lower bound on f(x∗). On the other hand, we know that mirror descent is essentially a dual
method, and thus approaches f(x∗) from the other direction.
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In 2014, Zeyuan Allen-Zhu combined these strategies to create an intuitive algorithm
that matches Nesterov’s method [5]. The main idea is that when the size of the gradient
||∇f(x)||∗ is large, then gradient descent can make large steps to quickly approach the
optimum x∗, and when ||∇f(x)||∗ is small, mirror descent’s x̄ is more stable an accurate.
Thus, combining them yields a faster algorithm overall.

Consider the case when f(x0)− f(x∗) is small, f is L-smooth, and ||∇f(xt)||∗ is always
≥ G or ≤ G. We remember from Vishnoi’s gradient descent proof, if η = 1

2L , we get the
following bound for the progress at each step:

f(xt)− f(xt+1) ≥ 1

4L
||∇f(xt)||2∗

Thus, gradient descent makes G2

4L progress at each step, and needs only T ≥ Ω( LεG2 )
steps to converge. Additionally, from the mirror descent theorem, we know that when f is

ρ-Lipschitz, mirror descent only needs T ≥ Dρ2

ε2 steps to converge. Since we assume the D

is small and we know ||∇f(x)||∗ ≤ ρ, we have that T ≥ Ω(G
2

ε2 ) gives us convergence. Thus,
in either case

T ≥ Ω(max

{
Lε

G2
,
G2

ε2

}
)

If G = (Lε3)
1
4 , we get the following:

T ≥ Ω(max

{
Lε√
Lε

3
2

,

√
Lε

3
2

ε2

}
) = Ω(

L√
ε
)

This matches the convergence rate of Nesterov’s accelerated gradient descent!
In order for this strategy to work, Allen-Zhu borrows Nesterov’s idea of linear coupling

in order to perform mirror and gradient descent steps at the same time. In particular, he
uses a linear combination of both steps, with a parameter τ ∈ [0, 1] to control how the two
steps are linearly combined. The rough algorithm is given in Algorithm 4.

Algorithm 4 RoughAGM(x0, η, τ,Φ, T ) [5]

1: Let x1 = y1 = z1 = x0

2: for t = 1 . . . T do
3: xt+1 = τzt + (1− τ)yt
4: yt+1 = GD( 1

L , xt+1, T )
5: zt+1 = MD(η, xt+1,Φ, T )
6: end for

Using the Mirror Descent Lemma, Allen-Zhu shows that for all x ∈ K

η〈∇f(xt+1), zt − x〉 ≤ η2L(f(xt+1)− f(yt+1)) +B(zt, x)−B(zt+1, x) (1)

Assuming x = x∗, every iteration either the mirror descent step zt brings us closer to
x or the objective decreases from the gradient descent step. Unfortunately, this series does
not telescope over all t = 1 . . . T due to the presence of non-canceling xt+1 and yt+1 terms.
Yet using the definition of convexity and the fact τ(xt+1 − zt) = (1− τ)(yt − xt+1), we can
get a second inequality:

11



η〈∇f(xt+1), xt+1 − x〉 − η〈∇f(xt+1), zt − x〉 ≤
(1− τ)η

τ
(f(yt)− f(xt+1)) (2)

Letting 1−τ
τ = ηL, we can add inequalities 1 and 2, which cancel to get the following

lemma:

Lemma 14 (Allen-Zhu [5]). Letting τ ∈ (0, 1) satisfy 1−τ
τ = ηL, we get that ∀x ∈ K:

η〈∇f(xt+1), xt+1 − x〉 ≤ Lη2(f(yt)− f(yt+1)) +B(zt, x)−B(zt+1, x) (3)

Notice that the use of τ allows us to bound the progress at a single step with a telescoping
series. Telescoping over the series and letting x̄ = 1

T

∑T
i=1 xt, we can then bound the

approximate error after T iterations. We then f(y0) − f(x∗) ≤ Θ and B(x0, x
∗) ≤ D to

achieve the following result:

f(x̄)− f(x∗) ≤ 1

T
(ηLΘ +

D

η
) (4)

Finally, letting η =
√

D
LΘ , we get the following bound:

f(x̄)− f(x∗) ≤ 2
√
LDΘ

T
(5)

This means that every T = 4
√

LD
Θ steps, f(x̄)−f(x∗) ≤ Θ

2 , meaning the distance to the

optimal x∗ is halved. Thus, if we restart this procedure halving the distance with each run,

we get T = O(
√

LD
ε ), as is desired. Unfortunately, because Θ and D are not always known

in practice, this rough strategy doesn’t work. However, the authors show that by letting η
and τ change across iterations, this potential problem can be avoided. Algorithm 5 gives
the full algorithm.

Algorithm 5 AGM(x0, η, T ) [5]

1: Assume f is L-Smooth with respect to || · ||
2: x1 = y1 = z1 = x0

3: for t = 1 . . . T do
4: ηt+1 = t+2

2L
5: τt = 1

ηt+1L

6: xt+1 = τzt + (1− τ)yt
7: yt+1 = argminy∈K{L2 ||y − xt+1||+ 〈∇f(xt+1), y − xt+1〉}
8: zt+1 = argminz∈K{B(zk, z) + 〈ηt+1∇f(xt+1), z − zt〉}
9: end for

10: return yT

Similar to Nesterov’s method, as T → ∞, τt = 0 and the linear coupling algorithm
becomes gradient descent. This makes sense as the gradient descent ensures progress and is
more stable than mirror descent as we approach the optimum. Additionally, we note that
this algorithm uses Nemirovski’s mirror descent steps.

12



4.4 Convergence

Theorem 15 (Allen-Zhu [5]). Assume f is L-smooth w.r.t. || · || on K, and Φ is 1-
strongly convex w.r.t. || · || on K. Let D be any upper bound on B(x0, x

∗). Then the

linear coupling algorithm needs T = O(
√
DL√
ε

) iterations to achieve f(xT )− f(x∗) ≤ ε.

Proof Sketch. Following a similar proof strategy, we achieves the following error bound after
a single iteration:

ηt+1(f(xt+1)− f(x)) ≤ (1− τt)ηt+1

τt
(f(yt)− f(xt+1)) (1)

− η2
t+1L(f(xt+1)− f(yt+1)) +B(zt, x)−B(zt+1, x) (2)

for any x ∈ K. Letting τt = 1
ηt+1L

:

ηt+1(f(xt+1)− f(x)) ≤ (η2
t+1L− ηt+1)f(yt)− η2

t+1Lf(yt+1) (3)

+ ηt+1f(xt+1) +B(zt, x)−B(zt+1, x) (4)

The choice of τt gets us closer to a telescoping inequality. Simplifying this inequality
leads to the following lemma:

Lemma 16 (Allen-Zhu [5]). If τt = 1
ηt+1L

, then ∀x ∈ K:

ηt+1(f(x)− f(xt+1)) ≥ η2
t+1Lf(yt+1)− (η2

t+1L− ηt+1)f(yt) (5)

+ B(zt+1, x)−B(zt, x) (6)

We set η2
tL = η2

t+1L− ηt+1 + 1
4L and then telescope over all t:

η2
TLf(yT ) +

T−1∑
t=1

1

4L
f(yt) +B(zT , x)−B(z0, x) ≤

T∑
t=1

ηtf(x) (7)

We are now ready to substitute x = x∗. After T iterations, we have
∑T
t=1 ηt = T (T+3)

4L .
Additionally, we know that f(yt) ≥ f(x∗), B(zT , x

∗) ≥ 0, and B(z0, x
∗) = D. Thus:

(T + 1)2f(yT )L

4L2
≤ (

T (T + 3)

4L
− T − 1

4L
)f(x∗) +D (8)

Simplifying, we get

f(yT )− f(x∗) ≤ 4DL

(T + 1)2
(9)

Proving the theorem [5].

13



5 Stochastic Gradient Descent

5.1 Overview

Many convex minimization functions in machine learning have the following structure:

F (x) =
1

n

n∑
i=1

fi(x) + φ(x)

Here, fi(x) is a convex function which is associated with the i-th observation in the data
set and φ(x) is a convex proximal function. These functions often arise in least squares,
maximum likelihood estimation, and empirical risk minimization.

Note that the standard gradient descent method would iterate over the gradient of all
summand functions fi. When the data set is enormous, this often becomes impractical.
Stochastic gradient descent (SGD) has been shown to be faster, more reliable, less likely
to reach a local minimum of the function [7]. With SGD, we sample I ∈ {1, 2, . . . n}, and
calculate the new point according to the gradient at this fI only. Algorithm 6 gives the full
algorithm.

Algorithm 6 SGD(x0, η, T ) [7]
1: x1 = x0

2: for t = 1 . . . T do
3: Sample I ∈ {1, 2, . . . n}
4: xt+1 = xt − η∇fI(xt)
5: end for
6: return xT

In this case, Algorithm 6 assumes that the proximal function φ(x) is zero. When the
proximal function φ(x) is present, the SGD update step is generalized as the following [8]:

xt+1 = argminy

{
1

2η
||y − xt||22 + 〈∇fI(x), y〉+ φ(y)

}
Additionally, we note that on expectation, SGD is an unbiased estimator of gradient

descent:

∇F (x) =
1

n

n∑
i=1

∇fi(x) = E[∇fI(x)]

Thus, ∇φI(x) is an unbiased estimator of the gradient of F at x, and has a cost of
computing independent of n. SGD has many other advantages over gradient descent. While
gradient descent can get stuck at a local minimum for non-convex functions, SGD can escape
from a local minimum due to its random nature. Additionally, it is known to converge even
when the objective function is not differentiable everywhere [7].

It is natural to ask whether SGD can also be accelerated. Unfortunately, convergence
is much more difficult than for gradient descent due to the algorithms large variance. It is
known that SGD has a slow standard convergence rate of roughly O( 1

ε2 ) [9]. Even when F
is strongly convex, the convergence rate is at most O( 1

ε ) [8]. This is largely because SGD
requires a decaying learning rate in order to reduce the variance and ensure convergence.
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5.2 Variance Reduction

Many methods for accelerating SGD focus on reducing the variance of the algorithm.
In 2013, Johnson and Zhang published the stochastic variance reduced gradient (SVRG)
method in order to improve convergence rate [9]. In the σ-strongly convex setting, they
achieve an ε-approximation in T = O((n+ L

σ ) log 1
ε ) iterations.

Let f(x) = 1
n

∑n
i=1 fi(x) be the function we wish to minimize. The method keeps

a snapshot vector x̃, updated every m iterations of stochastic gradient descent. It then
computes a full gradient descent step with this vector as follows:

∇f(x̃) =
1

n

n∑
i=1

∇fi(x̃)

The update step is then modified to be the following:

xt+1 = xt − η(∇fI(xt)−∇fI(x̃) +∇f(x̃))

Note that E[∇fI(xt) − ∇fI(x̃) +∇f(x̃)] = ∇f(xt) as before. By adding in a ∇f(x̃) −
∇fI(x̃) term at every iteration, we reduce the variance at each iteration and stabilize the
algorithm. In particular, as xt → x∗:

||X − E[X]||2 = ||(∇fI(xt)−∇fI(x̃) +∇f(x̃))−∇f(xt)||2 → 0

Algorithm 7 gives the full SVRG descent algorithm [9].

Algorithm 7 SVRG(x0, η, S,m) [9]

1: x̃ = x0

2: for s = 1 . . . S do
3: x̃ = x̃s−1

4: ∇f(x̃) = 1
n

∑n
i=1∇fi(x̃s)

5: x1 = x̃
6: for t = 1 . . .m do
7: Sample I ∈ {1, 2, . . . n}
8: xt+1 = xt − η(∇fI(xt)−∇fI(x̃) +∇f(x̃))
9: end for

10: x̃s = xt for t ∈ {0 . . .m− 1}
11: end for
12: return x̃S

Theorem 17 (Johnson and Zhang [9]). Assume all fi are convex, L-smooth, and F is
σ-strongly convex. Let x∗ be where F is minimum and let F (x0)−F (x∗) = Θ. Assume
m is sufficiently large such that

α =
1

mση(1− 2Lη)
+

2Lη

(1− 2Lη)
< 1

Then on expectation we get exponential convergence,

E[F (x̃s)− F (x∗)] ≤ αsΘ
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Proof Sketch. We provide a proof sketch of Johnson and Zhang’s theorem. Consider gI(x) =
fI(x) − fI(x∗) − ∇fI(x∗)T (x − x∗). Using the fact that all fi are L-smooth, Johnson and
Zhang show the following gradient bound:

||∇fI(x)−∇fI(x∗)||22 ≤ 2LgI(x) (1)

We can then use this inequality to show that the gradient moves us closer to F (x∗) on
expectation:

E[∇fI(xt)−∇fI(x̃) +∇f(x̃)]22 ≤ 4L[F (xt) + F (x̃)− 2F (x∗)] (2)

We can use this to show the distance between xt+1 and x∗ decreases at each iteration:

E[||xt+1 − x∗||22] ≤ E[||xt − x∗||22]− 2η(1− 2Lη)[F (xt)− F (x∗)] (3)

+ 4Lη2[F (x̃)− F (x∗)] (4)

We notice that this series can be telescoped over all t = 1 . . .m to obtain the following
inequality:

2η(1− 2Lη)mE[F (x̃s)− F (x∗)] ≤ 4Lmη2E[F (x̃s−1)− F (x∗)] (5)

+ E[||x0 − x∗||]22 − E[||xm − x∗||22] (6)

We can discard the term E[||xm − x∗||22] ≥ 0. We can then use the strong convexity
property to bound the expected distance between x0 and x∗. We can then bound the
expected difference E[F (x̃s)− F (x∗)] as follows:

E[F (x̃s)− F (x∗)] ≤ [
1

mση(1− 2Lη)
+

2Lη

(1− 2Lη)
]E[F (x̃s−1)− F (x∗)] (7)

Over all s, we get that E[F (x̃s) − F (x∗)] ≤ αsE[F (x̃0) − F (x∗)] and the theorem is
proven. Additionally, we note that this is equivalent to achieving an ε-approximation in
T = O((n+ L

σ ) log 1
ε ) iterations [9].

6 Accelerated Stochastic Gradient Descent

6.1 Overview

In 2016, Zeyuan Allen-Zhu introduced a stochastic gradient method that allowed for accel-
erated, O( 1√

ε
) convergence in general and improved convergence when F is strongly convex

(by a factor of
√

L
σ ) [8]. The method, called Katyusha, has the fastest known convergence

rate and can be applied to a variety of convex objectives.
Katyusha combines linear coupling and variance reduction in order to efficiently descend

toward the minimum x∗. To choose xt+1, katyusha uses a convex function of three variables:
x̃, yt, and zt.

Conceptually, yt and zt ressemble variables in methods we have seen before. yt is set to
the variance reduced gradient for the current iteration while zt is a variance reduced mirror
descent step. Note that from the linear coupling algorithm, combining gradient descent
and mirror descent achieves the same convergence as Nesterov’s method. Additionally, the
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algorithm uses x̃ as the snapshot vector in a similar manner to variance reduction. The
use of x̃ reduces the variance of the stochastic updates, and ensures that the momentum
never carries us too far in the wrong direction. The x̃ vector is referred to as the Katyusha
momentum. Algorithm 8 gives the full algorithm with the L-smooth assumption.

Algorithm 8 Katyusha(x0, σ, S) [8]

1: m = 2n
2: τ2 = 1

2
3: Initialize x̃0, y0, z0 = x0

4: for s = 1 . . . S do
5: τ1,s = 2

s+4

6: ηs = 1
3τ1,sL

7: µs = ∇f(x̃s)
8: Initialize y1 . . . ym
9: for t = 1 . . .m do

10: Sample I ∈ [n]
11: xt = τ1,szt−1 + τ2x̃s + (1− τ1,s − τ2)yt−1

12: ∇̂t = µs +∇fI(xt)−∇fI(x̃s)
13: yt = argminy{ 3L

2 ||y − xt||
2 + 〈∇̂t, y〉+ φ(y)}

14: zt = argminz{ 1
2ηs
||z − zt||2 + 〈∇̂t, z〉+ φ(z)}

15: end for
16: x̃s+1 = 1

m

∑m
t=1 yt

17: end for
18: return x̃S

The algorithm reflects many of the similarities of the linear coupling algorithm in how
τ1,s and ηs decay, allowing the steps to become variance reduced gradient descents overtime.
Also note that when the proximal function φ(x) is zero, the update steps for zt and yt
become variance reduced mirror descent and gradient descent steps respectively. In the
strongly convex setting, the only difference is that τ1 and η are set in the beginning and
do not converge over time. Additionally, the strongly convex setting, takes into account σ
when calculating snapshot vector x̃s+1.

6.2 Convergence

Theorem 18 (Allen-Zhu [8]). Assume each fi(x) is convex and L-smooth. Let F (x0)−
F (x∗) = Θ and ||x0 − x∗|| = D. Then Katyusha needs T = O(n

√
Θ+
√
nLD√
ε

) iterations

to achieve f(xT )− f(x∗) ≤ ε.

Proof Sketch. We can think of x̃ as the snapshot parameter, yt as the variance reduced
gradient step, and zt as the variant reduced mirror step. In proving the theorem, Allen-Zhu
first proves five lemmas, and then ends with the final proof. The entire proof is several
pages long, so we will provide a conceptual proof sketch for conciseness.
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• We first use the L-Smooth property to show that, on expectation, yt will always
decrease F (x) during a given iteration. The proof resembles any proof of gradient
descent convergence, but now includes the proximal function term.

• We then upper-bound the variance E[||∇̂t − ∇f(xt)||] as tightly as possible. This is
to show the variance at any given step is never too large.

• From the mirror descent step for zt, we derive a variant of the Mirror Descent Lemma
for any x ∈ K:

〈∇̂t, zt − x〉+ ηφ(zt) + ηφ(x) ≤ −1

2
||zt−1 − zt||2 (1)

+
1

2
||zt−1 − x||2 −

1

2
||zt − x||2 (2)

• Combine the previous three lemmas and the definition of xt to bound the term
ηs〈∇f(xt), zt−1 − x〉 − ηsφ(x) from above.

• Using the parameters τ1,s and τ2, we can then establish the following inequality for
a given iteration of Katyusha (see Appendix B for why this differs from Allen-Zhu’s
paper):

0 ≤ ηs(1− τ1,s − τ2)

τ1,s
Dt−1 −

ηs
τ1,s

E[Dt] +
ηsτ2
τ1,s

D̃s (3)

+
1

2
||zt−1 − x∗||2 −

1

2
E[||zt − x∗||2] (4)

where Dt = F (yt) − F (x∗) and D̃s = F (x̃s) − F (x∗). This inequality gives us a
relationship between the progress toward F (x∗) in the objective and our distance
from x∗. We see that every iteration, either the mirror descent step zt brings us closer
to x∗ or the objective F (x∗) decreases, subject to error proportional to D̃s (which is
always decreasing).

• Telescoping this inequality across all iterations t = 1 . . . T and s = 1 . . . S and simpli-
fying, we get the following inequality:

E[F (x̃S)− F (x∗)] ≤ O(
τ1,S
m

)(
1− τ1,0 − τ2

τ2
1,0

(F (x0)− F (x∗)) (5)

+
nτ2
τ2
1,0

(F (x̃0)− F (x∗)) +
3L

2
||z0 − x∗||2) (6)

= O(
1

m2S2
)(m2Θ + Lm||z0 − x∗||2) (7)

= O(
1

T 2
)(n2Θ + LnD2) (8)

Thus, after T = O(n
√

Θ+
√
nLD√
ε

) iterations, we have E[F (x̃S) − F (x∗)] ≤ ε, and the

theorem is proved [8].
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There is also a proof for the strongly convex case, which with similar analysis proves the
following bound:

Theorem 19 (Allen-Zhu [8]). Assume each fi(x) is convex, L-smooth, and the proximal
function φ(x) is σ-strongly convex. Let F (x0) − F (x∗) = Θ. Then Katyusha needs

T = O((n+
√

nL
σ ) log Θ

ε ) iterations to achieve f(xT )− f(x∗) ≤ ε.

7 Appendix

7.1 A.

A step-by-step proof using the Mirror Descent Lemma which shows Tη(f(x̄) − f(x∗)) ≤
T ρ2η2

2 +D. We start with the Mirror Descent Lemma:

η(f(xt)− f(x)) ≤ η〈∇f(xt), xt − x〉 ≤
η2

2
||∇f(xt)||2 +B(xt, x)−B(xt+1, x)

Let x = x∗ and x̄ = 1
T

∑T−1
t=0 xt. From x̄ = 1

T

∑T−1
t=0 xt:

ηT (f(x̄)− f(x∗)) = ηT (f(
1

T

T−1∑
t=0

xt)− f(x∗))

Definition of convexity:

ηT (f(
1

T

T−1∑
t=0

xt)− f(x∗)) ≤ ηT (
1

T

T−1∑
t=0

f(xt)− f(x∗))

First inequality from the lemma:

ηT (
1

T

T−1∑
t=0

f(xt)− f(x∗)) ≤ ηT 〈 1

T

T−1∑
t=0

∇f(xt), xt − x∗〉

=

T−1∑
t=0

η〈∇f(xt), xt − x∗〉

Second inequality from the lemma:

ηT (
1

T

T−1∑
t=0

f(xt)− f(x∗)) ≤
T−1∑
t=0

(
η2

2
||∇f(xt)||2 +B(xt, x

∗)−B(xt+1))
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Telescoping the right-hand side:

ηT (
1

T

T−1∑
t=0

f(xt)− f(x∗)) ≤
T−1∑
t=0

η2

2
||∇f(xt)||2 +B(x0, x

∗)−B(xT , x
∗)

From f being ρ-Lipschitz:

ηT (f(x̄)− f(x∗)) ≤ T ρ
2η2

2
+B(x0, x

∗)−B(xT , x
∗)

Letting D = B(x0, x
∗):

ηT (f(x̄)− f(x∗)) ≤ T ρ
2η2

2
+D

7.2 B.

Zeyuan Allen-Zhu’s paper currently shows the following inequality for one round of Katyusha:

0 ≤ ηs(1− τ1,s − τ2)

τ1,s
Dt−1 −

ηs
τ1,s

E[Dt] +
mηsτ2
τ1,s

D̃s (1)

+
1

2
||zt−1 − x∗||2 −

1

2
E[||zt − x∗||2] (2)

Notice the extra coefficient m on the D̃s term. This m should only be present after
telescoping over t = 1 . . .m. Professor Allen-Zhu confirmed this was a typo after I emailed
him.
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