Deep Learning for Network Traffic Classification

Niloofar Bayat
Columbia University
nb2776@columbia.edu

Abstract

Monitoring network traffic to identify content, services,
and applications is an active research topic in network traf-
fic control systems. While modern firewalls provide the capa-
bility to decrypt packets, this is not appealing for privacy ad-
vocates. Hence, identifying any information from encrypted
traffic is a challenging task. Nonetheless, previous work has
identified machine learning methods that may enable appli-
cation and service identification. The process involves high
level feature extraction from network packet data then train-
ing a robust machine learning classifier for traffic identifi-
cation. We propose a classification technique using an en-
semble of deep learning architectures on packet, payload,
and inter-arrival time sequences. To our knowledge, this is
the first time such deep learning architectures have been ap-
plied to the Server Name Indication (SNI) classification prob-
lem. Our ensemble model beats the state of the art machine
learning methods and our up-to-date model can be found
on github: |https://github.com/niloofarbayat/
NetworkClassification

1. Introduction

Transport Layer Security (TLS) is one of the key crypto-
graphic protocols for providing communication security over
the Internet. The protocol allows client/server applications to
communicate in a way that is designed to prevent eavesdrop-
ping, tampering, or message forgery [1]. Today, TLS is cen-
tral to the internet, and as it protects user privacy and security,
websites are encouraged to use it. TLS is used extensively in
HTTP, SMTP, FTP, and VoIP, where privacy and security is
needed, and websites using HTTP in TLS tunnels (HTTPS)
have increased drastically over the past decade [2]].

Over HTTPS services, the client and server first commu-
nicate through a TLS handshake, as shown in Figure In
this negotiation, protocol version, cryptographic algorithms,
SSL certificates for authentication, and shared secrets based
on public-key cryptography will be settled. If the handshake
is completed successfully, client and server start to communi-
cate information over an encrypted link [[1].

I'This image is adopted from |https://www.ibm.com/support/
knowledgecenter/en/SSFKSJ_7.1.0/com.ibm.mg.doc/
syl0660_.htm

Weston Jackson
Columbia University
wjj2106@columbia.edu

Derrick Liu
Columbia University
dl3122@columbia.edu

SSL Client SSL Server

(1) "client hello”

Cryptographic information

(2) "server hello”

) (8) CipherSuite
Verify server Server certificate

certificate. "client certificate request" (optional)
Check
cryptographic
parameters (4) Client key exchange

Send secret key information
(encrypted with server public key) (6)

(5) Send dient certificate Verity client

certificate
(7) Client “finished” (if required)

(8) Server “finished”

(9) Exchange messages

(encrypted with shared secret key)

Figure 1. TLS handshake protocol

Server Name Indication (SNI) is an extension to TLS hand-
shake, which holds the destination hostname and can be ex-
tracted from Client-Hello message as in Figure[T[3]. SNI is a
central component to HTTPS traffic inspection for many ser-
vices and institutions. To preserve users’ security, Firewalls
inspect SNI to check if a server name is allowed. Moreover,
intermediaries that censor their internet services also use SNI
as a filter [4)]. Since SNI is not encrypted, it does not com-
pletely preserve the privacy of users, and a man-in-the-middle
can eavesdrop to discover the requested websites [S]. More-
over, SNI can be faked to bypass such Firewalls and eaves-
droppers [6]. Since mid 2018, an upgrade called Encrypted
SNI (ESNI) has been proposed to address this issue of domain
eavesdropping [4} [7]. If successful, such a change would fa-
vor privacy advocates, leading to new challenges for network
administrators and eavesdroppers alike.

2. Problem Formulation and Goals

While ESNI would favor the privacy advocates over the
eavesdroppers, previous work suggests that applications and
services can be predicted with a high degree of accuracy with-
out using SNI specific fields 8, 9)]. Chen et al. find that side
information can be extracted from many web applications de-

https://github.com/niloofarbayat/NetworkClassification
https://github.com/niloofarbayat/NetworkClassification
https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_7.1.0/com.ibm.mq.doc/sy10660_.htm
https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_7.1.0/com.ibm.mq.doc/sy10660_.htm
https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_7.1.0/com.ibm.mq.doc/sy10660_.htm

Our Contribution

Data Pre-processing

R i L I Y

Classification Model

Safe HTTPS

Training and
model building

training

— J

dataset

Feature extraction
TLS connection
reconstruction
SNI labeling

Output

Predictive model

Predicted
services

it

TLS connection
reconstruction

Suspicious
HTTPS traffic

" Feature extraction

Figure 2. Workflow of the proposed HTTPS Identification model

spite using HTTPS protection [9]. Their model assumes the
eavesdropper can only observe the number of packets and
timing/size of the packets. The information leaked includes
health data, family income, and search queries. The root cause
of these side-channel leaks is due to significant traffic and
communication differences in web applications and defense
from such leaks is non-trivial and application-specific [9].

Traffic and communication differences between web appli-
cations could pose a significant threat to ESNI and other tech-
niques to bypass SNI identification, as high SNI classification
accuracy shows that such protocols are unable to completely
protect user privacy from side-channel attacks.

In this work, our main goal is to examine the effectiveness
of deep learning for HTTPS SNI classification. We will only
rely on encrypted TLS packet data without the SNI extension,
and the SNI will constitute our ground truth labels. Under the
assumption that SNI is not faked or forged, we will examine
whether service identification accuracy can be improved with
deep learning. To our knowledge, this is the first work to use
deep learning on HTTPS data to classify SNI.

3. Related Works
3.1. Machine Learning

Previously, training supervised Naive Bayes classifiers as
header-driven discriminators achieved high accuracy for many
network traffic systems [10]. However, due to the growth of
encrypted traffic, such approaches have been rendered inef-
fective. More recent approaches have focused on application
level identification without using IP addresses, port numbers,
or decrypted payload information. Alshammari et al. find
that Decision Trees achieve the best accuracy when classify-
ing Skype and SSH traffic [11]. Okada et al. improve on
this work by focusing on the creation of statistical features re-
lated to packet size and packet transfer times for application
classification (FTP, DNS, HTTP, etc.) [12]. These features
achieve high accuracy when paired with Support Vector Ma-
chines classifiers. However, application level identification is

not granular enough to address our research question, as our
challenge is to detect the underlying service name rather than
the type of traffic.

Shabir et al. were one of the first to tackle this more granu-
lar problem of service identification for HTTPS-specific traf-
fic (for instance maps.google.com vs drive.google.com) [8].
Their work includes collecting HTTPS traces from user ses-
sions and using the SNI extension for labelling each connec-
tion. Their proposed statistical framework includes the stan-
dard packet and inter-arrival time statistics, as well as ad-
ditional statistical features related to the encrypted payload.
They achieve their best results using Decision Tree and Ran-
dom Forest classifiers.

3.2. Deep Learning

There are currently few papers that apply deep learning
to network traffic classification problems. Lopez-Martin et
al. appear to be the first to apply Recurrent Neural Net-
works (RNN) and Convolutional Neural Networks (CNN) to
the application level identification problem [13]]. Their CNN-
LSTM architecture uses source port, destination port, packet
size, TCP window size, and inter-arrival times as features, and
beats the standard Random Forest classifier. Importantly, they
also find that a large number packets is not necessary, as be-
tween 5-15 packets is sufficient to achieve excellent results.
We find their work helpful in its analysis of deep learning ar-
chitectures for network traffic, as many of their conclusions
can also be applied to the SNI classification problem.

4. Methods
4.1. Data Collection and Labeling

Publicly available HTTPs data was gathered by crawling
top accessed HTTPs websites twice a day on both Google
Chrome and Mozilla Firefox [[14]. This data was gathered
over a two week period in 2016, and consists of almost
500,000 HTTPs flows from thousands of different services
and websites. The dataset is made up of twenty-four raw

2500
w 2000
=
8
S 1500
=
=
& 1000
500
0
\\\Q @ g :P
3 s & £ & .
dbdl-i' ?P‘c? c}ﬁ;‘\o *ﬁ’o @(JF' @ °E§‘ °¢‘}* &
o I & & o 6‘_;‘,
& & o €
o &
SNis

Figure 3. Top 10 SNIs with connection counts for day one Google
Chrome data.

packet capture (pcap) files, each between four and six giga-
bytes of data. We restrict our paper to Google Chrome data
only, which consisted of 301,018 HTTPS flows (about 25GB
of data).

To generate our training data, we perform various prepro-
cessings on the pcap files. Since a pcap file may contain all
different kinds of traffic within a local machine, we use SSL
filter on Wireshark to obtain only the HTTPS traffic [8]. Then,
since we are interested in packets in both directions (from the
local machine to a specific server and vice versa), we wrote
a script to distinguish incoming versus outgoing packets. Our
method involves forming a 4-tuple for each TCP connection,
consisting of source IP, destination IP, source port number,
and destination port number. We unify the TCP connections
which have their source and destination IP/port reversed, since
that implies two directions of communication with a specific
server. We then filter out all unknown SNIs and clean the
remaining labels by removing numbers, dashes, and other un-
necessary characters.

For each connection, we store the following attributes in
memory: SNI (label), accumulated bytes, arrival times, packet
sizes, and payload sizes. Figure [3] shows the most common
SNI labels and their total number of connections. Once the
pcap files are loaded into memory, we generate the datasets to
be used for classification.

4.2. Statistical Features

The first dataset generated from the pcap files consists of
forty-two statistical features used for training and validating
the standard Random Forest classifier as presented by previ-
ous work [8]]. The features are as follows, and for each group
of features we calculate remote—local, local—remote, and
combined directions of communication?]

e Packet size: {num, 25th, 50th, 75th, max, avg, var}
e Inter-arrival time: {25th, 50th, 75th}

2Payload size only uses remote—local, local— remote as in

e Payload size: {25th, 50th, 75th, max, avg, var}

4.3. Sequence Features

Our second dataset consists of the sequences of packet
sizes, payload sizes, and inter-arrival times generated from
the TLS handshake that are needed for our Recurrent Neu-
ral Network. These features were chosen as they are standard
features for machine learning network traffic classification,
and each feature consists of a meaningful sequence. We use
sequences from the combined packets for our training data,
instead of sequences from local—remote or remote—local.
Each length-n sequence corresponds with the first n packets
per TCP connection, ordered by arrival time. All shorter se-
quences are pre-padded with zeros such that each input has
the same length.

Importantly, because inter-arrival times have large variance
even within the same sequence (anywhere from milliseconds
to several minutes), directly training an RNN on inter-arrival
time sequences yields poor results. While standardizing and
normalizing leads to improvement in some cases, it does not
solve the issue of a single inter-arrival time ¢ being several or-
ders of magnitude larger than every other time unit in the se-
quence. Moreover, the largest inter-arrival times are often near
the end of the packet sequence, which can adversely affect
how the gradient propagates through time. We mitigate this
problem by training our RNN on log ¢. This decision greatly
improves our results as using log ¢ preserves similarity in the
time sequence while not letting a single large inter-arrival time
throw off the gradient calculation.

Choosing the correct packet sequence length is a balancing
act. The longest TCP handshakes in our dataset have tens of
thousands of packets. This makes training an RNN on full se-
quences extremely time-consuming. However, as in [13]], we
are able to get surprisingly good results with relatively small
sequence lengths n. For all our results, we choose n = 25 as
longer sequences yield diminishing accuracy improvements
and much slower training times.

4.4. Deep Learning

Our deep learning architectures primarily make use of
Convolutional Neural Networks (CNN) and Gated Recurrent
Units (GRU) for sequence classification [13] [16].

CNNs were initially applied to image processing and im-
age classification, where feature engineering can be done au-
tomatically by extracting locational patterns from the image
[17]. In our case, we apply a one dimensional CNN to our
time series features to capture dependencies between feature
vectors in consecutive time slots.

GRUs are a type of Recurrent Neural Network that extend
the conventional feedforward neural network to sequences of
variable length [16]. A GRU handles these sequences of vari-
able length by holding a hidden state which has an activation
dependent on the previous state. In this way, GRU is able to
adaptively capture dependencies from time series data.

Layer (type) Output Shape Param #
gru_l (GRU) (32, 100, 159) 76797
gru_2 (GRU) (32, 159) 152163
dense_4 (Dense) (32, 59) 9440
activation 3 (Activation) (32, 59) 0

Total params: 238,400
Trainable params: 238,400
Non-trainable params: 0

Figure 4. The summary of our preliminary model

4.5. Evaluation Metrics

We use several evaluation metrics for training and validat-
ing our classifiers. Our final reported results include accu-
racy, precision, recall, and F1-score for a variety of classi-
fiers. For precision, recall, and F1-score, scikit-learn reports
the macro-average which is an unweighted average of the cal-
culated statistic per class. However, we calculate accuracy as
simply as the sum of correct predictions over the total num-
ber of predictions. Thus, more prevalent classes have larger
affect on our accuracy measurements. Ultimately, since the
final metrics all return similar results, we will refer most often
to accuracy.

All accuracy scores are reported using 10-Fold Cross Vali-
dation. Training and validation only includes SNI classes that
meet a minimum number of connections (min connections)
threshold. The rationale is that the training data needs a suf-
ficient number of connections from a given SNI in order to
learn the characteristics of the TLS handshake [8]. As de-
creasing the min connections filter increases the number of
classes, accuracy is typically lower with a lower min connec-
tions threshold.

4.6. Hardware

Our preliminary results were run locally on MacOS with
16GB of memory. Our final training and validation results
were run on a Google Deep Learning virtual machine. We
use a Debian Linux OS instance with 16vCPUs and 60 GB of
memory.

5. Results
5.1. Preliminary Model

For our deep learning based architecture, we begin with an
RNN trained on packet sequences only. The baseline archi-
tecture is a simple two layer GRU in Keras, which performs
sequence to class modeling. We follow the two GRU layers
with a fully-connected dense layer with Softmax activation.
The output of the network has the number of neurons equal
to the number of SNI classes. The neuron with the strongest
activation represents the predicted class. The baseline archi-
tecture was trained for 10 epochs, and we use a batch size of
64, Adam optimizer, and sparse categorical cross entropy loss.
A summary of the model can be seen in Figure

Figure [5] shows the accuracy for the Random Forest and

1.0
08
306
o
=
Q
< 04
—¥— REF Classifier
=¥+ Auto_sk with RF features
02 —e— NN Classifier
- ®- Auto_sk with NN features
0.0

50/139 100/59 150/31 200/12 25017
Min Connections/ # Classes
Figure 5. 10-Fold Cross Validation accuracy on day one of data,
while varying the minimum number of connections. Accuracy re-
ported for Random Forest on statistical features, Auto-Sklearn on
statistical features, baseline GRU RNN on sequence features, and
Auto-Sklearn on sequence features.

Neural Net classifiers on the first day of TCP data. Note that
the accuracy of the Random Forest classifier remains above
85% even with a low barrier to entry (minimum connections
< 50). Figure [5] also includes the accuracy of the proposed
model from Auto-Sklearn [[18]]. Auto-Sklearn is a library built
off of sklearn that compares several supervised machine learn-
ing algorithms in order to automatically search for a optimal
classifier with well tuned hyperparameters.

The Auto-Sklearn algorithm also selects a Random For-
est classifier on the statistical features, which further supports
the literature that claims Random Forest is ideal for network
traffic classification on summary statistics. However, Auto-
sklearn has a slightly lower accuracy than the original Ran-
dom Forest classifier which is due to the lower number of es-
timators it chooses. This is simply due to the library’s mem-
ory limits restrictions. Auto-Sklearn ensemble classifiers also
outperform our baseline RNN classifier with packet size se-
quences as features. As the results suggest that the baseline
RNN architecture has room for improvement, we iterate on
this design in the following sections.

5.2. Improvements

After our initial results, we make several important changes
to improve the accuracy of our deep learning classifier. Our
changes directly address two central problems pertaining to
the baseline RNN: (1) The baseline RNN performs poorly
on specific inputs, (2) The baseline RNN has high bias when
there are many potential classes.

To address the first problem, we employ the additional
features (payload size, inter-arrival time) from the TCP-
handshake to train the classifier. Yet rather than train a single
classifier on all three features, we create separate classifiers
to learn each feature for an ensemble method. Our rationale
is that each deep learning architecture can be trained to rec-
ognize a different signal, such that an ensemble of all three
is robust across many possible signals. Our final ensemble
classifier simply chooses the class with the highest Softmax
probability after averaging across the three individual classi-

Only for IAT

CNN (+RelLU)
CNN (+RelLU)
GRU (+tanh)
7]
v
Dropout Layer
7]
4

=
S
r=}
©
&
©
2
=
S
z
i
S
2
©
@

Batch Normalization
Dense Layer (+Sigmoid)
Dense Layer (+Softmax)

Time Series

Figure 6. Layers of our final CNN-RNN model which uses inter-
arrival time, payload length, and packet length represented in time-
series as features. The first and second convolutional layers use size
3 kernel and 200 and 400 filters respectively. Our GRU uses 200 hid-
den units and our fully-connected layers have 200 and n hidden units
respectively, where n is the number of classes. Dropout between
the fully-connected layers is needed for inter-arrival time features to
reduce over-fitting.

mmm Packet CNN-RNN
B Payload CNN-RNN

AT CNN-RNN
I Ensemble CNN-RNN

1.0
08
%06
g
=}
8
< 04
0.2
0.0 «
IR P A
LS _.d- @Qb @o y Q\e, b(‘*? \\o &(\
& & V& P g‘-’
0 RS
o & @
& _\9“’ @\c" &
& ¢ &
SNis
Figure 7. A comparison of prediction accuracy for SNIs among

different classifiers (1000 min connections). Ensembling the results
of CNN-RNN classifiers, built from packet size, payload size and
inter-arrival times leads to the best prediction accuracy.

fiers. To address the high bias problem, we create a CNN-
RNN architecture and add more complexity and hidden units
to our RNN layers. An overview of our model is provided in
Figure[§] We alter our model to include Convolutional layers,
Batch Normalization, and an additional dense layer. To adjust
for the much larger model, we add dropout to the inter-arrival
time CNN-RNN which is prone to over-fitting. We also re-
move one GRU layer to speed up training time.

The effectiveness of the ensemble method can be seen in
Figure[7]which reports the accuracy of each classifier per-SNI
with at least 1000 min connections, along with the accuracy of
the ensemble classifier. While there are too many classes for a
diagram at lower thresholds, Figure [§|shows the performance
boost from the ensemble method is clear across all minimum
connections settings.

Finally, we make a few important changes to our train-
ing and validation process. Rather than train for 10 epochs,
we use the early stopping feature provided by Keras to end
training when validation loss does not improve for 5 epochs.

Output dimension

—®%— Ensemble CNN-RNN
0z T IAT CHMN-RNN
—#— Packet CNN-RNN
Payload CNN-RNM
0.0

2000229 400488

G049
Min Connections/ # Classes

a00/23 1000/13

Figure 8. Accuracy as a function of min connections for differ-
ent classifiers: inter-arrival time trained CNN-RNN, packet trained
CNN-RNN, payload trained CNN-RNN and ensemble CNN-RNN.
As shown in the Figure, ensemble outperforms the rest.

Early stopping is a crucial component to our model’s perfor-
mance, as lower minimum connections thresholds can require
30+ epochs for validation accuracy to converge.

5.3. Best Results

Our final results are reported after performing 10-Fold
Cross Validation for a variety of minimum connections thresh-
olds. The most important results are when the threshold is
lowest (min connections = 100), as this is the most realistic
and difficult scenario for a network traffic classifier. This is
also the threshsold settings used for the same dataset in [8]].
Using 100 min connections leads to 532 possible SNI classes
when we restrict ourselves to just Google Chrome data.

For this setting, the Random Forest classifier achieves
92.2% 10-Fold Cross Validation accuracy (see Appendix).
Our preliminary baseline RNN trained on packet sequences
achieves 67.8% accuracy. The two-layer baseline CNN
trained on packet sequences achieves 62.4 % accuracy. The
combined CNN-RNNs for packet, payload, and inter-arrival
time sequences achieve 77.1%, 78.1%, and 63.2% respec-
tively (architectural changes alone lead to 10% improvement
for our deep learning classifier trained on packet sizes). Fi-
nally, the ensemble CNN-RNN achieves 82.3% accuracy. Ul-
timately, with deep learning architectures alone, we are unable
to improve upon the accuracy of the Random Forest classifier.

Nonetheless, the Random Forest classifier can be beaten.
To do so, we create an ensemble of the Random Forest with
our best deep learning classifier. This requires us to average
the Softmax output of our CNN-RNN ensemble with the log
probability outputs of the Random Forest classifier provided
by scikit-learn. Let orp(z), 04, (), 04,(2), 0a,(x) be the
output probabilities for Random Forest, packet, payload, and
inter-arrival time trained classifiers respectively. The final
combined classifier amounts to choosing the SNI class with
the highest average output across four total classifiers:

1.00

—&— Ensemble RF + CNN-RNN

—¥— Random Forest
0.98

Q.80

2001229 400/88 /004G BO0I23
Min Connections/ # Classes

1000713

Figure 9. Ensembling the results from inter-arrival time CNN-RNN,
payload size CNN-RNN and packet size¢ CNN-RNN, with Random
Forest (note that the y-axis is restricted to [0.9, 1.0]).

. 1
§ = argmax §URF(:v)y

1
+ aodl ({E)y

1
+ gadz (x)y

1
+ gada (J:)y

Figure 0] shows how the ensemble Random Forest + CNN-
RNN outperforms the Random Forest classifier at every tested
minimum connection threshold. The rationale is similar to
that of the previous section. While the Random Forest per-
forms better on average, the CNN-RNN classifiers can outper-
form it on specific SNI-classes. For example, Figure[T0|shows
that even with only 13 classes and a 1000 min connections
threshold, ensembling the Random Forest with the CNN-RNN
classifiers leads to better prediction on nezus.ensighten.com.
A comparison of all classifiers for precision, recall, and F1-
Score metrics can be seen in Figure [IT] as well as the Ap-
pendix.

6. Discussion
6.1. Architecture Variations

Our deep learning architecture still has room for improve-
ment, as we do not optimize the model for specific minimum
connection thresholds. We use the same model for all settings,
meaning that an architecture designed for a specific number of
SNI-classes could outperform out current classifier. Addition-
ally, the individual CNN-RNNs trained on packet, payload,
and inter-arrival time sequences all use the roughly the same
architecture. Further improvements are possible by optimiz-
ing each of these architectures individually, then combining
the result into a stronger ensemble classifier.

One possible area of improvement that we did test involves
how the underlying CNN-RNNSs are ensembled. For our best
model, we weight the output of each CNN-RNN Softmax
equally, but this is not necessarily ideal. Because packet and

B Random Forest B Ensemble CNN-RNN Bl Ensemble RF + CNN-RNN

1.0

08
%06
o
3
<04
02
00 o . o
o¥ ¢ o \\FP& *,0"@ 299& & 82'*'9) Qcp& Q;P((\ 69"&. Q.o"(\\ Qé’&
RS 2 g NC A s
¥ &P F S NV & & & &
o & & FE S @
& A
& & §
SNIs

Figure 10. A comparison of prediction accuracy for different SNIs
as a function of different classifiers: Random Forest, ensemble CNN-
RNN, and Random Forest + ensembled CNN-RNN. The plot clearly
shows that ensembling leads to the best results.

bl
o

I =ccuracy
B precision
I recall

N f1-score

Score (100 Min Connections)
o o e 9 o
o [}%] - (=] (=]
!
”

0 S S S
B o A X & &L &
¢ Q,e”éo oé(\‘FQ"}& fb‘}d} <

& & S
*’0&6
Classifier

Figure 11. Accuracy, precision, recall and f1-score for different clas-
sifiers (100 minimum connections). Ensemble of Random Forest
with the newly built CNN-RNN network leads to improved accu-
racy/precision/recall and f1-score.

payload sizes are correlated, the CNN-RNNs trained on these
features are learning a very similar signal. Thus, it is possi-
ble that an ensemble which gives more weight to the inter-
arrival time classifier could outperform out current model. On
the other hand, because the inter-arrival time CNN-RNN typi-
cally performs worse on lower minimum connections settings,
it is also possible that decreasing its weight for the ensemble
classifier could lead to better results. The appendix includes
a few tests for ensembles with different combinations of fea-
tures (packet + inter-arrival time, packet + payload, etc). Our
results indicate that optimizing the combination of CNN-RNN
outputs does not yield consistent improvement, and is largely
dependent on the dataset and minimum connection thresholds
on which the classifiers are trained.

We leave optimizing a deep learning classifier for a specific
number of SNI-classes and minimum connection settings as
an open question and opportunity for future work.

0.8
& 0.6
g
=
[%]
£ 04
0.2
®— Ensemble CNN-RNMN
—¥— Ensemble CNN-RNN wiD
0o i

200/229 400/88 GOOM49 800723
Min Connections/ # Classes

1000113

Figure 12. Accuracy of ensemble CNN-RNN and ensemble CNN-
RNN with additional directional features. As shown in the Fig-
ure, we do not find consistent improvement with the added features
across minimum connections thresholds. Further results are in the
Appendix.

6.2. Directional Features

Although [13] suggests directional features can improve
performance of a deep learning network traffic classifier, our
results do not entirely reflect this. We conduct a test using
an additional directional feature for our packet, payload, and
inter-arrival time CNN-RNNs. We define the directionality d
of each packet in the packet sequence as follows:

1, client — server
server — client
0, else (i.e. padding)

Figure [T2]shows the accuracy of the final ensemble classi-
fier with and without an additional direction vector added to
each CNN-RNN. Our results indicate inconsistent improve-
ment with this additional feature across minimum connection
thresholds. Accuracy results for the individual CNN-RNNs
with directionality are also reported in the Appendix. Ulti-
mately, we believe that the use of directionality as a feature
for deep learning network traffic classifiers needs to be further
investigated.

7. Conclusion

This work adds to the literature of TLS-based encrypted
traffic classification by applying a deep neural network archi-
tecture for SNI detection. While most existing work addresses
identifying application types, we focus on identifying HTTPS
services. Our motivation for investigating SNI classification is
twofold: (1) there are currently active research projects dedi-
cated to eliminating the SNI extension to prevent eavesdrop-
ping [4,[7], (2) even in existing systems, SNI can be spoofed
by users [6]. However, assuming SNI can be predicted from
encrypted traffic with high accuracy, such techniques may be
rendered ineffective.

Using a neural network architecture, we are able to ef-
fectively identify SNI by only considering statistics and se-
quences of encrypted TCP traffic, without decryption or us-

ing any header information. Our model consists of a com-
bination of Recurrent Neural Networks, Convolutional Neu-
ral Networks, and Random Forest (the best machine learning
method based on literature and Auto-Sklearn learn). By care-
fully analyzing different methods and studying the most infor-
mative features of network flow data, we achieve a high accu-
racy for an ensemble model which, to the best of our knowl-
edge, outperforms the state of art. Future work would be using
this model on real-time HTTPS traffic to test its effectiveness
in predicting internet services.

8. Acknowledgements

We would like to acknowledge Professor Drori for his ad-
vice and guidance as well as the authors W.M Shbair et al. for
sharing their previous work.

References

[1] T. Dierks. The transport layer security (tls) protocol ver-
sion 1.2 (rfc 5246). https://tools.ietf.org/
html/rfc5246, 2008.

[2] David Naylor, Alessandro Finamore, Ilias Leontiadis,
Yan Grunenberger, Marco Mellia, Maurizio Munafo,
Konstantina Papagiannaki, and Peter Steenkiste. The
cost of the s in https. In Proceedings of the 10th ACM
International on Conference on emerging Networking
Experiments and Technologies, pages 133-140. ACM,
2014.

[3] D. Eastlake. Transport layer security (tls) extensions:
Extension definitions (rfc 6066), 2011.

[4] Thomas Claburn. Don’t panic about do-
main fronting, an sni fix is getting hacked out.
https://www.theregister.co.uk/2018/
07/17/encrypted_server_names/, 2018.

[5] Tanmay Patange. Thow to defend your-
self against mitm or man-in-the-middle attack.
https://hackerspace.kinja.com/how—
to-defend-yourself-against-mitm-or—
man—-in-the-middl1-1461796382,2013.

[6] Wazen M Shbair, Thibault Cholez, Antoine Goichot, and
Isabelle Chrisment. Efficiently bypassing sni-based https
filtering. In Integrated Network Management (IM), 2015
IFIP/IEEE International Symposium on, pages 990-995.
IEEE, 2015.

[7] SETH SCHOEN. Esni: A privacy-protecting upgrade to
https. https://www.eff.org/deeplinks/
2018/09/esni-privacy—-protecting-
upgrade—-https, 2018.

[8] W.M. Shbair, T. Cholez, J. Francois, and I. Chrisment. A
multi-level framework to identify https services. In Net-
work Operations and Management Symposium (NOMS),
2016 IEEE/IFIP, pages 240-248. IEEE, 2016.

https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc5246
https://www.theregister.co.uk/2018/07/17/encrypted_server_names/
https://www.theregister.co.uk/2018/07/17/encrypted_server_names/
https://hackerspace.kinja.com/how-to-defend-yourself-against-mitm-or-man-in-the-middl-1461796382
https://hackerspace.kinja.com/how-to-defend-yourself-against-mitm-or-man-in-the-middl-1461796382
https://hackerspace.kinja.com/how-to-defend-yourself-against-mitm-or-man-in-the-middl-1461796382
https://www.eff.org/deeplinks/2018/09/esni-privacy-protecting-upgrade-https
https://www.eff.org/deeplinks/2018/09/esni-privacy-protecting-upgrade-https
https://www.eff.org/deeplinks/2018/09/esni-privacy-protecting-upgrade-https

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Shuo Chen, Rui Wang, XiaoFeng Wang, and Kehuan
Zhang. Side-channel leaks in web applications: A reality
today, a challenge tomorrow. In 2010 IEEE Symposium
on Security and Privacy, pages 191-206. IEEE, 2010.

Andrew W. Moore and Denis Zuev. Internet traffic clas-
sification using bayesian analysis techniques. SIGMET-
RICS Perform. Eval. Rev., 33(1):50-60, June 2005.

R. Alshammari and A. N. Zincir-Heywood. Machine
learning based encrypted traffic classification: Identify-
ing ssh and skype. In 2009 IEEE Symposium on Com-
putational Intelligence for Security and Defense Appli-
cations, pages 1-8, July 2009.

Y. Okada, S. Ata, N. Nakamura, Y. Nakahira, and I. Oka.
Comparisons of machine learning algorithms for appli-
cation identification of encrypted traffic. In 2011 10th
International Conference on Machine Learning and Ap-
plications and Workshops, volume 2, pages 358-361,
Dec 2011.

M. Lopez-Martin, B. Carro, A. Sanchez-Esguevillas,
and J. Lloret. Network traffic classifier with convo-
lutional and recurrent neural networks for internet of

things. IEEE Access, 5:18042-18050, 2017.

Jerome Francois Isabelle Chrisment Wazen Shbair,
Thibault Cholez. Https websites dataset.
4http://betternet.lhs.loria.fr/
datasets/https/, 2016.

Sven Behnke. Hierarchical neural networks for image
interpretation, volume 2766. Springer, 2003.

Junyoung Chung, Caglar Giilgehre, KyungHyun Cho,
and Yoshua Bengio. Empirical evaluation of gated re-
current neural networks on sequence modeling. CoRR,
abs/1412.3555, 2014.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural
networks. In Advances in neural information processing
systems, pages 1097-1105, 2012.

Matthias Feurer, Aaron Klein, Katharina Eggensperger,
Jost Springenberg, Manuel Blum, and Frank Hutter.
Efficient and robust automated machine learning. In
C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama,
and R. Garnett, editors, Advances in Neural Information
Processing Systems 28, pages 2962—-2970. Curran Asso-
ciates, Inc., 2015.

4 http://betternet.lhs.loria.fr/datasets/https/
4 http://betternet.lhs.loria.fr/datasets/https/

Appendix
Accuracy

100/532 | 200/229 | 300/ 131 | 400/ 88 500/ 65 600 /49 700/ 35 800 /23 900/16 | 1000/ 13
93.5% A | 949% A | 96.6% A | 96.8% A | 972% A | 97 7% A | 97.8% A | 982% A | 99.4% A | 99.4% A
922% B | 93.7% B | 952%B | 956% B | 96.2% B | 96.8% B | 97.5%B | 97.7% B | 98.7% B | 99.1% B
82.7% D | 86.1%F | 89.0% D | 91.0% D | 90.7% C | 90.5% D | 90.0% E | 93.4%F | 98.6% F | 98.3% G
822% C | 86.0%C | 89.0% C | 90.1%F | 89.5%E | 89.6%F | 89.9% C | 933% G | 984% G | 98.1% D
82.1% G | 85.6% G | 882% G | 90.0% C | 89.5% D | 89.5% C | 89.7% D | 923% C | 97.5% C | 97.4% C
81.0% F | 852%D | 88.1%F | 89.7% G | 89.4% G | 893% G | 89.6%F | 91.8% D | 97.3% D | 973%F
80.1% E | 843%E | 86.7%E | 89.1% H | 89.4%F 89.3% 1 89.4%1 | 912%E | 96.1%] 97.1% 1
78.5% 1 82.5% L | 85.9%L 89.0%1 | 88.8% K | 88.6% E | 89.3% K | 90.3% 1 96.0% E 96.9% J
78.1% L | 823%K | 858%1 88.4% E | 883%L | 884% K | 89.2%L | 89.9% L | 95.9% K | 96.8% E
771% K | 81.6% H | 852% H | 87.8% K | 88.3%1 88.1% L | 89.0% G | 899% K | 958%1 | 96.7% H
76.6% H 81.2% 1 85.1% K | 873%L | 871.2% N | 87.2% H | 89.0% H | 89.2% H | 95.7% L | 96.2% L
67.8% N | 793% N | 81.8% N | 852% N | 87.1% H | 86.0% N | 86.7% O | 87.8% N | 95.6% H | 95.8% K
64.6% J 72.8%7J | 77.8% 0 | 81.1% 0 | 84.8% 0O | 854% O | 86.7% N | 869%1J | 93.8% N | 94.9% N
63.2% M | 72.4% O | 749% M | 79.5%] 81.2%1J | 80.0% M | 83.4%1J | 86.5% M | 93.7% M | 94.9% M
624% O | 7104% M | 74.6%1 | 774% M | 80.6% M | 793%J | 82.5% M | 84.0% O | 91.0% O | 91.9% O
Table 1. 10-Fold Cross Validation accuracies for all tested classifiers for given min connections / # classes settings (specified in header).
Results are from entire Google Chrome dataset. Precision, recall, and F1-Score are also reported on the next page.

Legend:

A: Ensemble B + C

B: Random Forest

C: Ensemble K+ L +M

D: Ensemble H+1+1J

E: Ensemble K + L

F: Ensemble K + M

G: Ensemble L + M

H: CNN-RNN (Packet + Directional features)
I: CNN-RNN (Payload + Directional features)
J: CNN-RNN (Inter-Arrival Time + Directional features)
K: CNN-RNN (Packet)

L: CNN-RNN (Payload)

M: CNN-RNN (Inter-Arrival Time)

N: Baseline RNN (Packet)

O: Baseline CNN (Packet)

Precision

100/532 | 200/229 | 300/ 131 | 400/ 88 500/ 65 600/49 700/ 35 800/23 900/16 | 1000/ 13
93.8% A | 95.0% A | 96.6% A | 97.0% A | 97.0% A | 98.0% A | 98.0% A | 98.0% A | 99.0% A | 99.4% A
92.5%B | 93.7% B | 953% B | 96.0% B | 96.5% B | 97.0% B | 97.6% B | 97.7% B | 99.0% B | 99.0% B
86.0% D | 88.2% C | 90.6% C | 920%D | 92.0% C | 920%F | 93.0%F | 940%F | 99.0% F | 98.0% G
85.2% C 88.0% F 90.0% F | 91.6% C | 920%D | 920%D | 922%C | 94.0% G | 98.0% G | 98.0% D
84.0%E | 88.0%D | 90.0% G | 91.0%F | 91.0%E | 91.4% C | 920%E | 93.7% C | 98.0% D | 97.8% C
84.0%F | 87.0%E | 90.0%D | 91.0% G | 91.0%F | 91.0% G | 920% G | 93.0%E | 97.8% C | 97.0% E
84.0% G | 87.0% G | 89.0%E | 91.0% H | 91.0% G | 91.0%1 | 920%D | 93.0% D | 97.0% E | 97.0% F
83.0% 1 85.6% L | 88.0%L | 90.0%E | 904% K | 90.4% K | 91.0% H | 92.0%1 | 97.0% H | 97.0%]
822% L | 852% K 88.0% 1 90.0% 1 90.0% L | 90.0% E 91.0% 1 91.8% L 97.0% 1 97.0% H
82.0% H | 85.0% H | 87.4% K | 89.2% K | 90.0% 1 89.6% L | 90.8% K | 91.5% K | 96.5% K | 97.0% 1
81.6% K 85.0% 1 87.0% H | 88.8% L | 89.0% N | 89.0% H | 90.8% L | 91.0% H | 96.2% L | 96.6% L
722% N | 822% N | 84.0% N | 86.8% N | 89.0% H | 88.0% N | 88.4% N | 89.0% N | 96.0%J | 96.3% K
69.0% O | 78.0% 0O | 81.0% 0O | 83.0% O | 86.0% O | 87.0% O | 88.0% 0O | 89.0%J | 94.6% N | 95.3% N
68.0% J 77.0%J | 76.6% M | 80.0%J | 82.8% M | 81.0% M | 86.0% M | 87.8% M | 93.8% M | 95.1% M
66.2% M | 734% M | 76.0%J | 78.8% M | 82.0%] 79.0% J 85.0%J | 85.0% O | 93.0% O | 93.0% O
Recall
100/532 | 200/229 | 300/131 | 400/ 88 500/ 65 600 /49 700/ 35 800/23 900/16 | 1000/ 13
93.6% A | 95.0% A | 96.4% A | 97.0% A | 97.0% A | 98.0% A | 98.0% A | 98.0% A | 99.0% A | 99.4% A
922%B | 93.7% B | 950% B | 95.7% B | 96.0% B | 96.7% B | 97.6% B | 97.7% B | 99.0% B | 99.0% B
83.0% D | 86.0% C | 89.0%D | 91.0% D | 90.6% C | 90.0%F | 90.0% C | 93.0%F | 99.0% F | 98.0% G
82.2%C | 86.0%F | 88.8%C | 90.0% C | 90.0% E | 90.0%D | 90.0% E | 93.0% G | 98.0% G | 98.0% D
82.0% G | 86.0% G | 88.0%F | 900%F | 89.0%F | 89.6% C | 90.0%F | 923%C | 97.5% C | 97.3% C
81.0%F | 85.0% D | 88.0%G | 90.0% G | 89.0% G | 89.0%E | 90.0%D | 920%D | 97.0% D | 97.0% E
80.0%E | 84.0%E | 87.0%E | 89.0% H | 89.0% D | 89.0% G | 89.5% K | 91.0% E | 96.0% E | 97.0% F
79.0% 1 82.4% L 86.0% 1 89.0%1 | 88.6% K | 89.0% 1 89.5% L | 902% L | 96.0% 1] 97.0% J
T82% L | 82.2% K | 85.8% L | 88.0%E | 882%L | 88.6% K | 89.0% G | 90.0%1 | 96.0% K | 97.0% H
77.0% H | 82.0% H | 854% K | 87.8% K | 88.0% 1 882% L | 89.0% H | 89.8% K | 96.0% H 97.0% 1
76.8% K 81.0% 1 85.0% H | 872%L | 871.2% N | 871.0% H | 89.0%1 | 89.0% H | 96.0% 1 96.2% L
67.8% N | 792% N | 81.6% N | 852% N | 87.0% H | 862% N | 87.0% O | 87.9% N | 957%L | 96.0% K
65.0% J 73.0%J | 78.0% 0O | 81.0% O | 85.0% 0O | 85.0% O | 86.6% N | 87.0%J | 93.8% M | 95.0% M
63.4% M | 72.0% O | 75.2% M | 80.0%] 81.0%J | 80.0% M | 83.0%J | 86.7% M | 93.7% N | 94.8% N
62.0% O | 704% M | 75.0%71 | 77.8% M | 81.0% M | 79.0%] | 822% M | 84.0% O | 91.0% O | 92.0% O
F1-Score
100/532 | 200/229 | 300/ 131 | 400/ 88 500/ 65 600/49 700/ 35 800/23 900/16 | 1000/ 13
93.6% A | 95.0% A | 96.4% A | 97.0% A | 97.0% A | 98.0% A | 98.0% A | 98.0% A | 99.0% A | 99.4% A
92.0%B | 93.7% B | 950% B | 95.7% B | 96.0% B | 96.7% B | 97.6% B | 97.7% B | 99.0% B | 99.0% B
83.0% D | 86.0% C | 89.0% D | 91.0% D | 90.6% C | 90.0% D | 90.0% C | 93.0%F | 99.0% F | 98.0% G
82.0% C | 86.0%F | 88.8% C | 90.0% C | 90.0%E | 89.0% C | 90.0%E | 93.0% G | 98.0% G | 98.0% D
82.0% G | 85.0% G | 88.0%F | 90.0%F | 89.0%F | 89.0%F | 90.0% D | 92.0% C | 97.5% C | 97.3% C
81.0%F | 85.0%D | 88.0%G | 90.0% G | 89.0% G | 89.0% G | 89.5% K | 920% D | 97.0% D | 97.0% E
80.0% E | 84.0%E | 87.0%E | 89.0% H | 89.0% D | 89.0% 1 89.5% L | 91.0% E | 96.0% E | 97.0% F
782% L | 82.8% L 86.0% 1 89.0%1 | 88.6% K | 88.0%L | 89.0%F | 90.0% K | 96.0%] 97.0% J
78.0% 1 824% K | 858% L | 88.0%E | 882%L | 88.0%E | 89.0%H | 90.0%1 | 96.0% K | 97.0% H
T7.0%H | 82.0%H | 85.0%H | 87.8% K | 88.0% 1 87.6% K | 89.0% 1 89.8% L | 96.0% H 97.0% 1
76.8% K 81.0% 1 84.8% K | 87.2%L | 87.0% N | 87.0% H | 88.0% G | 89.0% H | 96.0% I 96.2% L
67.5% N | 792% N | 81.2% N | 85.0% N | 87.0% H | 85.7% N | 87.0% O | 87.4% N | 95.7% L | 96.0% K
63.0%J | 73.0% 0O | 780% O | 81.0% O | 85.0% O | 85.0% O | 86.6% N | 87.0%J | 93.8% M | 95.0% M
62.0% O | 72.0%J) | 73.8% M | 79.0%] 80.0%J | 78.8% M | 82.0%J | 86.3% M | 93.7% N | 94.8% N
62.0% M | 69.0%M | 73.0%] | 76.8%M | 79.6% M | 78.0%1J | 81.2% M | 84.0% O | 91.0% O | 92.0% O

10

	. Introduction
	. Problem Formulation and Goals
	. Related Works
	. Machine Learning
	. Deep Learning

	. Methods
	. Data Collection and Labeling
	. Statistical Features
	. Sequence Features
	. Deep Learning
	. Evaluation Metrics
	. Hardware

	. Results
	. Preliminary Model
	. Improvements
	. Best Results

	. Discussion
	. Architecture Variations
	. Directional Features

	. Conclusion
	. Acknowledgements

