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Abstract

The field of distribution testing has evolved rapidly over the past two decades, gaining ever-
increasing importance as data sets increase in size. In this paper, we survey recent breakthroughs
for two important distribution testing subproblems: identity testing and uniformity testing. The
identity testing problem asks us, given a fixed distribution p, how many samples from an unknown
distribution q are needed to distinguish p = q from ‖p − q‖1 ≥ ε? The uniformity testing problem is
similar, asking us to solve this problem in the case where p is the uniform distribution. Our survey
will cover a variety of sublinear time algorithms for solving these problems, including collision-based
and coincidence-based testers, culminating in a tight instance-optimal tester from Valiant and Valiant.
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1 Introduction

Analyzing and learning from massive amounts of data is of utmost importance in computer science,
statistics, and many other related fields. While the mantra of bigger is better is often true when it comes
to data sets, in many cases the amount of data can be so large that traditional algorithms for testing
underlying distributions become infeasible. In these instances, we turn our attention to distribution
testing algorithms. Distribution testing algorithms are sampling algorithms that allow us to learn specific
properties of the data efficiently as opposed to learning an entire distribution. In many cases, recent
advancements in distribution testing have led to significant reductions in the time complexity for testing
properties of data sets and thus understanding their underlying distributions.

More formally, distribution testing algorithms ask us how many times do we need to draw elements
from an unknown distribution q, over n elements, in order to test whether q has some property. One of
the most important problems in distribution testing is the identity testing problem.

Definition 1 (Identity Testing Problem). Given a known distribution p, how many samples x1 · · ·xm
from an unknown distribution q are needed to distinguish p = q from ‖p− q‖1 ≥ ε with probability 2/3.

The goal is to create an algorithm which solves the identity testing problem using as few samples as
possible. The identity testing problem is a generalized form of the uniformity testing problem, which
asks how many samples are needed when p is the uniform distribution.

One solution to the identity testing problem is via distribution learning. Distribution learning requires
us to take i.i.d samples from the unknown distribution q until we can learn q to ε accuracy. From [1],
it is known that we can learn q to sufficient accuracy with O( n

ε2
) samples. Thus, one trivial solution to

test whether p and q are identical would be to take O( n
ε2

) samples to learn q, and then compute whether
‖p−q‖1 ≤ ε. The inefficiency with distribution learning is that learning q in order to determine if ‖p−q‖1
is not actually necessary. In particular, the solution doesn’t exploit the distribution of p in any way. The
key to property testing with less samples will be to compare properties of p and q which can be estimated
with sublinear samples.

2 Sublinear Testing Background

2.1 Goldreich and Ron

Goldreich and Ron study property testing as it is applies to graphs [2]. Their input is a graph G on n
vertices with bounded degree d. They then ask how many queries on G are needed to determine if G
is an expander with probability 2/3. An expander graph is a graph in which the second eigenvalue of
the adjacency matrix is at most λ ∈ [0, 1]. The goal is to reject if the graph is ε-far from having second
eigenvalue at most λ′ where λ′ = λα/O(1) (we assume α < 0.5 and λ < λ′). Goldreich and Ron’s algorithm
for expander graph testing is given in Algorithm 1.

For any starting vertex s, denote ps,v the probability that a random walk of length L starts at s and

ends at v. If the algorithm accepts after O(n
0.5+α

ε2
) queries, Goldreich and Ron prove that with constant

probability, the value of
∑

v∈[n] p
2
s,v is within a 1± n−α/2

4 factor to a graph in which the collision probability

is at most 1
n . Thus, the `2 distance between the probability vector (ps,v)v∈[n] and the uniform probability

vector is close. Note that in the case where α = 0, the algorithm can determine if
∑

v∈[n] p
2
s,v has `2

distance within a (1± ε) factor of the uniform distribution with O(
√
n
ε2

) samples.

Theorem 2. Given an unknown distribution q over n, there is a test using O(
√
n
ε2

log(1/δ)) samples that
estimates ‖q‖2 to within a factor of (1± ε) with probability 1− δ
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Algorithm 1 Goldreich and Ron

1: function ExpanderGraphTester(G,α, λ, ε)
2: Set L = 1.5 lnn

ln( 1
λ
)

3: for t = Θ(1ε ) times do:
4: Select uniformly a start vertex s
5: Perform m = Θ(n

0.5+α

ε ) random walks of length L starting from s
6: C := # collisions on endpoints of these m walks

7: if C > 1+0.5n
−α
2

n

(
m
2

)
then

8: return REJECT
9: end if

10: end for
11: return ACCEPT
12: end function

We can use the `2 sampler from Goldreich and Ron for the purpose of uniformity testing. The `2 dis-
tance of the probability vector (ps,v)v∈[n] from the uniform probability vector is

∑
v p

2
s,v− 1

n . Furthermore,
the `1 distance is bounded by

√
n times the `2 distance.

‖x− y‖1 ≤
√
n‖x− y‖2

Thus, testing uniformity to 1 + ε in `1 actually requires us to test within ε√
n

in `2. With this goal in

mind, Goldreich and Ron’s strategy requires O(
√
n
ε4

) total samples to solve the uniformity testing problem.

2.2 Batu et al.

In [3], Batu et al. use bucketing as well as the collision-based algorithm from Goldreich and Ron to reduce
the identity testing problem to the problem of testing several approximately uniform distributions. Given
a distribution p over R, they define {R0 · · ·Rk} as a partition of R into k = O( lognε ) buckets. Each bucket
Ri is defined as follows:

Ri = {j ∈ [n] :
(1 + ε)i−1

2n
≤ pj ≤

(1 + ε)i

2n
}

Lemma 3. Let p be an explicit distribution over R. Let U be the uniform distribution. Let {R0 · · ·Rk}
be the bucketed partition of p into O( lognε ) buckets. Then the restriction of p to the buckets of Ri is
approximately uniform:

‖Prp(Ri)− PrU (Ri)‖1 ≤ ε

‖Prp(Ri)− PrU (Ri)‖2 ≤
ε√
|Ri|

Since the restriction of p to any Ri is approximately uniform, we can use the `2 sampler from Goldreich
and Ron to ensure the sample distribution is close to uniform in the O( lognε ) buckets. In particular, we
sample from q and test if qRi is close to uniform on each Ri. The full tester is given in Algorithm 2.

The algorithm requires the number of samples on each bucket be sufficient to determine ‖qRi‖2 to
high accuracy via Goldreich and Ron. We then ensure that ‖qRi‖2 is close to uniform by rejecting if

‖qRi‖2 > 1+ε2

|Ri| . Finally, the last |pR − qR| > ε check is needed to ensure q does not sample too many
elements that are outside of R0 · · ·Rk. Using a similar argument to Goldreich and Ron’s uniformity
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Algorithm 2 Batu et al.

1: function IdentityTester(p, q, ε)
2: Partition (bucket) distribution p into k partitions, R1 · · ·Rk
3: Obtain O(

√
nε−2 log n) samples from q

4: for partition Ri s.t. pRi ≥ ε
k do:

5: if # collisions on Ri < O(
√
n
ε4

) then
6: return REJECT
7: end if
8: Estimate ‖qRi‖2 using Goldreich and Ron

9: if ‖qRi‖2 > 1+ε2

|Ri| then
10: return REJECT
11: end if
12: end for
13: if |pR − qR| > ε then
14: return REJECT
15: end if
16: return ACCEPT
17: end function

testing argument, Batu et al. show that this algorithm succeeds at differentiating p = q from ‖p−q‖1 ≥ ε
with constant probability1.

The sample complexity for the entire algorithm is O(
√
n log(n)poly(ε−1)), which arises from the

requirement to use Goldreich and Ron `2 estimator O( lognε ) times.

Theorem 4. There is an identity testing algorithm for any fixed p and unknown distribution q that
requires O(

√
n log(n)poly(ε−1)) samples.

3 Paninski’s Optimal Uniformity Tester

3.1 Upper Bound

In [4], Paninski proposes a tight Θ(
√
n
ε2

) uniformity tester that improves on Goldreich and Ron’s O(
√
n
ε4

)
algorithm. Rather than look at the number of collisions, Paninski looks at the number of coincidences –
the number of elements sampled exactly once (denoted by K1). The basic idea is that deviations from
uniformity will lead to more collisions, and hence less coincidences.

Let Eu[K1] be the expected number of elements sampled exactly once for the uniform distribution. Let

m be the number of samples. The test simply rejects if Eu[K1]−Eq[K1] > Tα for a threshold Tα = m2ε2

2n .
The proof of correctness relies on bounding Eq[K1] using the following lemma.

Lemma 5. In the case where ‖U − q‖1 ≥ ε:

Eu[K1]− Eq[K1] ≥
m2ε2

n
(1 +O(m/n))

1The tester from Batu et al. can actually differentiate ‖p − q‖1 ≤ Θ( ε3√
n log(n)

) from ‖p − q‖1 ≥ ε, which is a stronger

bound than is necessary for identity testing.
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Algorithm 3 Paninski

1: function UniformityTester(p, q, ε)
2: m := O(

√
nε−2)

3: Tα := m2ε2

2n
4: Obtain m samples from q
5: if m(n−1n )m−1 −K1 > Tα then
6: return REJECT
7: end if
8: return ACCEPT
9: end function

Consider an arbitrary distribution q. The probability that we sample a given element qi exactly once
over m samples is

(
m
1

)
qi(1− qi)m−1. Thus, the expected number of elements sampled exactly once is

Eq[K1] =
n∑
i=1

(
m

1

)
qi(1− qi)m−1

For the uniform distribution, this works out to Eu[K1] = m
(
n−1
n

)m−1
. Define f : [0, 1]→ R as follows:

f(x) = x

(
1−

(
n

n− 1
(1− x)

)m−1)

We can then rewrite

Eu[K1]− Eq[K1] = m

(
n− 1

n

)m−1
−

n∑
i=1

(
m

1

)
qi(1− qi)m−1 = m

(
n− 1

n

)m−1 n∑
i=1

f(qi)

We want to bound
∑n

i=1 f(qi) from below, which can easily be done by applying Jensen’s inequality
if f is convex. Unfortunately this is not the case, so Paninski develops a new lower bound for f using a
clever choice of a convex, symmetric function g that is strictly increasing on input g(|x|):

f(x) ≥ g
(
|x− 1

n
|
)

+ f ′
(

1

n

)(
x− 1

n

)
We can now apply Jensen’s inequality:

Eu[K1]− Eq[K1] ≥ m
(
n− 1

n

)m−1 n∑
i=1

g

(
|qi −

1

n
|
)
≥ m

(
n− 1

n

)m−1
ng(ε/n)

Then after massaging the function g, the lower bound follows.

Eu[K1]− Eq[K1] ≥
m2ε2

n
(1 +O(m/n))

Lemma 6.
V arq(K1) ≤ Eu[K1]− Eq[K1] +O(m2/n)
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The key insight for the proof is to use the strong Efron-Stein inequality for bounding variance:

V ar(S) ≤ 1

2
E[

m∑
j=1

(S − S(i))2]

where S is a function of random variables and S(i) = S(x1 · · ·x′i · · ·xm) is S computed with an i.i.d
copy of x′i. From here, we substitute S = K1 with xi being the independent samples from p. We omit
the rest of the proof as it just consists of bounding 1

2E[
∑m

j=1(S − S(i))2].

Let T := Eu[K1]−K1 and Tα := m2ε2

2n , There are two cases via Chebyshev:

• When p = q, we have that E[T ] = 0 and V ar = O(m2/n). By Chebyshev T ≥ Tα with probability

O( m
2

nT 2
α

) = O( n
ε4m2 ) = O(1) when m = Θ(

√
n
ε2

).

• When ‖p − q‖ ≥ ε, Paninski shows that the z-score is large E[T ]√
V ar[T ]

= O(m
2ε2/n√
m2/n

) = O(1) when

m = Θ(
√
n
ε2

).

Theorem 7. There is a uniformity testing algorithm for any unknown distribution q that requires only

O(
√
n
ε2

) samples.

3.2 Lower Bound

While it is easy to show that Ω(
√
n) samples are needed for unifomirty testing (see Appendix B), a tight

bound on ε was not proven until Paninski’s paper. The proof of the tight bound first assumes the number
of elements n is even. We then samples n/2 Bernoulli random variables zi ∈ {−1, 1}. Consider the hard
distribution q where:

qi =

{
1+εzi/2

n , i is even
1−εz(i+1)/2

n , i is odd

Essentially, each pair of consecutive domain elements 2i− 1 and 2i are assigned probabilities slightly
deviating from the uniform probability, namely 1+ε

n and 1−ε
n or vice versa. Given this definition, it is easy

to show that q is exactly ε-far from the uniform distribution. However, if we draw m = o(
√
n
ε2

) samples
from the uniform distribution and q, Paninski shows the statistical distance between the resulting two
m-fold product distributions is small.

Let Q and U be the product distribution after drawing m samples from q and the uniform distribution
respectively. The proof uses a method from Pollard [5]. Define

∆ =
dQ

dU
= 2−n/2

∑
z∈{−1,1}n/2

m∏
j=1

(1 +G(xj , z))

as the density of Q w.r.t. U after m samples where G(xj , z) = εzj/2 or εz(j+1)/2 if the jth sample is
even or odd. Paninski then substitutes `1 with `2 and bounds

‖U −Q‖2 = (E[(∆− 1)2])1/2 ≤ (e
m2ε4

n − 1)1/2

by expanding the inner (∆ − 1)2 term and exploiting the fact that Eu[G(xj , z)] = 0 (all the terms

cancel which are not of the form Eu[G(xj , z)G(xj , z
′)]). Thus, if m = o(

√
n
ε2

), the expression on the RHS
is further bounded away from a constant, which means that the `1 distance between two m-fold product
distributions is arbitrarily small.

Theorem 8. Any general uniformity testing algorithm requires Ω(
√
n
ε2

) samples.
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Figure 1: Example known distribution p and hard distribution q for Paninski’s lower bound.

4 Valiant and Valiant’s Instance Optimal Identity Tester

4.1 Intuition

While Paninski’s lower bound established a tight bound on uniformity testing, lower bounds for identity
testing remained an open question. However in 2014, Valiant and Valiant established a tight bound for
identity testing in the instance optimal case [6].

Definition 9. An instance-optimal identity testing algorithm is an algorithm that uses f(p, ε) samples
to distinguish p = q from ‖p− q‖ ≥ ε.

Valiant and Valiant give a tight instance optimal identity testing algorithm that requires sample

complexity upper bounded by O(
‖p‖2/3
ε2

). Interestingly, the 2/3 norm of the probability distribution p
turns out to be a natural bound for identity testing. From the Paninski lower bound, we can see such a
bound is tight when p is the uniform distribution:

O(
‖U‖2/3
ε2

) = O(
(
∑n

i=1
1
n

2/3
)3/2

ε2
) = O(

( n
n2/3 )3/2

ε2
) = O(

√
n

ε2
)

In the case where p is not the uniform distribution, the result immediately yields improved asymptotic

complexity from the O(
√
n logn

εO(1) ) algorithm from Batu et al.:

O(
‖p‖2/3
ε2

) ≤ O(
‖U‖2/3
ε2

) = O(

√
n

ε2
)

Furthermore, in the case where p has large probability concentrated on just a few elements, the
improvement is even greater.

4.2 Holder Inequality

Cauchy-Schwarz and Holder inequalities play an important role in the analysis of Valiant and Valiant’s
identity testing algorithm. They note that inequalities of the form∏

i

(
∑

xaij y
bi
j )ci ≥ 1

for (a)i, (b)i, (c)i are often proven via trial and error. Valiant and Valiant show that such inequalities
hold only when inequalities are expressible as a product of the following two forms for λ ∈ [0, 1]:
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• Holder inequalities

(
∑
j

xa
′
j y

b′
j )λ(

∑
j

xa
′′
j y

b′′
j )1−λ ≥

∑
j

x
λa′+(1−λ)a′′
j y

λb′+(1−λ)b′′
j

• Lp monotonicity inequalities

(
∑
j

xajy
b
j)
λ ≤

∑
j

xλaj y
λb
j

We omit the proof for conciseness.

4.3 χ2-test

Valiant and Valiant’s tester relies on an altered version of the classical χ2-test. In 1900, Pearson’s χ2-test
was the first statistical hypothesis test to measure the goodness of fit of a sample distribution to some
true distribution p [7]. Assuming we draw k i.i.d samples X from q, and want to determine whether these
samples match some distribution p, the χ2-test asks us to calculate the test statistic∑

i

(Xi − kpi)2

pi

which compares the expected and observed frequencies of each element pi in the known distribution.
If the test statistic is small enough, meaning the difference between the expected and observed events do
not differ by too much, we output p = q.

Unfortunately, in the case of rare events, the χ2-test has large variance. Consider the distribution
where Pr(p1) = 1 − 1

n and the remaining 1
n probability is split across n elements with probability 1

n2 .
The remaining elements are extremely unlikely, yet on expectation one will appear every n samples. The
appearance of a 1

n2 event assuming n samples will contribute

(1− n 1
n2 )2

1
n2

= Ω(n2)

to the calculation of the statistic. Thus, Pearson’s statistic places a substantial amount of weight on
rare events, and requires many samples in order to distinguish the sample and known distribution.

Valiant and Valiant alter Pearson’s statistic in two ways to get an improved tester. They replace 1/pi

with 1/p
2/3
i in the denominator, then subtract Xi/p

2/3
i from each term in the summation:∑

i

(Xi − kpi)2 −Xi

p
2/3
i

Replacing 1/pi with 1/p
2/3
i is important as it reduces the weight of rare events. Similarly, subtracting

Xi/p
2/3
i from each term means that rare events that appear zero or one times contribute less to the

statistic. Consider the previous case where a pi = 1
n2 event appears zero or one times in n samples:

(Xi − kpi)2 −Xi

p
2/3
i

≈ (X2
i −Xi)p

−2/3
i = 0

Since the probability a 1
n2 event appears twice in O(n) samples is extremely rare, Valiant and Valiant’s

tester has far less variance in these cases.
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(a) Case 1: ε-discrepancy in common elements. (b) Case 2: ε-discrepancy in uncommon elements.

Figure 2: The two cases for Valiant and Valiant’s instance-optimal identity tester.

4.4 Upper Bound

In proving the sample complexity upper bound for their tester, Valiant and Valiant show that their tester

only needs O(max{1ε ,
‖p−m−ε/16‖2/3

ε2
}) samples to achieve constant probability of success. The notation p−m−ε

implies that if the elements of p are in sorted order based on probability mass, then we remove the
smallest elements that have probability mass summing to ε and the element with maximum probability

mass, pm. Since 1
ε <

‖p‖2/3
ε2

, this implies that

O(max{1

ε
,
‖p−m−ε/16‖2/3

ε2
}) ≤ O(

‖p‖2/3
ε2

)

Rather than consider collisions or coincidences, Valiant and Valiant’s tester considers two cases. The
first case is for detecting when the ε-discrepancy between p and q is concentrated in the common elements
of p. Since the common elements occur with reasonable probability, Valiant and Valiant show that their
χ2-tester will have low variance. The second case is for detecting when the ε-discrepancy is concentrated
in the rare elements of p, in particular the least likely elements with O(ε) total probability mass. In this
case, although there can many rare elements, the effect of the discrepancy will be more obvious and will
be detectable with O(1/ε) samples.

Assume that the domain elements of p are sorted in increasing order of probability, and let s be the
largest integer such that

∑
i<s pi <

ε
8 . We also denote m as the index with maximum probability in p.

The tester is given in Algorithm 4.
For analysis, we denote the statistic calculated on each common element i as χi:

χi =
(Xi − kpi)2 −Xi

p
2/3
i

It is straightforward to then calculate the expectation and variance of the terms for each χi:

E[χi] =
k2(pi − qi)2

p
2/3
i

V ar[χi] =
2k2q2i + 4k3qi(pi − qi)2

p
4/3
i

8



Algorithm 4 Valiant and Valiant

1: function IdentityTester(p, q, ε)

2: Obtain Poi(cmax{1ε ,
‖p−m−ε/16‖2/3

ε2
}) samples from q

3: if
∑

i≥s,i 6=m[(Xi − kpi)2 −Xi]p
−2/3
i > 4k‖p−m≥s ‖

1/3
2/3 then

4: return REJECT
5: end if
6: if

∑
i<sXi >

3
16εk then

7: return REJECT
8: end if
9: return ACCEPT

10: end function

The proof of correctness for the upper bound relies on the following key lemma.

Lemma 10 (Key Lemma). Let s be the largest integer such that
∑

i<s pi <
ε
8 . For sufficient k =

Ω(
‖p−m−ε/16‖2/3

ε2
) samples when ε1 = Ω(ε) of the discrepancy falls above s (common elements), then for any

c1 ≥ 1:
c1V ar[

∑
i≥s,i 6=m

χi] < E[
∑

i≥s,i 6=m
χi]

2

or equivalently

c1
∑

i≥s,i 6=m

V ar[χi]

k4
< (

∑
i≥s,i 6=m

∆2
i p
−2/3
i )2

where ∆i = |pi − qi|

Proof. It can be shown that the number of samples k ≥ 1
c max{

‖p−m≥s ‖
1/3
2/3

p
1/3
s ε1

,
‖p−m≥s ‖2/3

ε21
}. By triangle inequality,

qi
k ≤ c(pi

ε21
‖p−m≥s ‖2/3

+ ∆i
p
1/3
s ε1

‖p−m≥s ‖
1/3
2/3

). Expanding
∑

i≥s,i 6=m
V ar[χi]
k4

:

c1
∑

i≥s,i 6=m

V ar[χi]

k4
≤

∑
i≥s,i 6=m

[p
2/3
i

ε41
‖p−m≥s ‖22/3︸ ︷︷ ︸
(1)

+ ∆ip
−1/3
i

p
1/3
s ε31

‖p−m≥s ‖
4/3
2/3︸ ︷︷ ︸

(2)

+ ∆2
i p
−4/3
i

p
2/3
s ε21

‖p−m≥s ‖
2/3
2/3︸ ︷︷ ︸

(3)

+ ∆2
i p
−1/3
i

ε21
‖p−m≥s ‖2/3︸ ︷︷ ︸
(4)

+ ∆3
i p
−4/3
i

p
1/3
s ε1

‖p−m≥s ‖
1/3
2/3︸ ︷︷ ︸

(5)

]

We can bound each term by (
∑

i≥s,i 6=m ∆2
i p
−2/3
i )2 separately. The idea is to bound each term using

ε1 ≤ ‖∆−m≥s ‖1 and then some form of Cauchy-Schwarz inequality:

ε21

‖p−m≥s ‖
2/3
2/3

≤
‖∆−m≥s ‖21
‖p−m≥s ‖

2/3
2/3

≤
∑

i≥s,i 6=m
∆2
i p
−2/3
i

• (1)
∑

i≥s,i 6=m p
2/3
i = ‖p−m≥s ‖

2/3
2/3, then Cauchy-Schwarz (squared)

9



• (2)
∑

i≥s,i 6=m ∆ip
−1/3
i ≤ ε1

p
1/3
s

, then Cauchy-Schwarz (squared)

• (3) p
−4/3
i p

2/3
s ≤ ‖p−m≥s ‖

−2/3
2/3 , ε21 ≤ ‖∆

−m
≥s ‖2, then Cauchy-Schwarz (squared)

• (4) Norm inequality, then Holder Inequality, to bound∑
i≥s,i 6=m

∆2
i p
−1/3
i ≤ (

∑
i≥s,i 6=m

∆
4/3
i p

−2/9
i )3/2 ≤ (

∑
i≥s,i 6=m

∆2
i p
−2/3
i )‖p−m≥s ‖

1/3
2/3

multiply LHS and RHS by Cauchy-Schwarz inequality, divide both sides by ‖p−m≥s ‖
1/3
2/3.

• (5) Norm inequality, then Holder Inequality, to show∑
i≥s,i 6=m

∆3
i p
−4/3
i ≤ (

∑
i≥s,i 6=m

∆2
i p
−8/9
i )3/2 ≤ (

∑
i≥s,i 6=m

∆2
i p
−2/3
i )3/2p−1/3s

multiply boths sides by square root of Cauchy-Schwarz inequality.

Theorem 11. Valiant and Valiant’s identity testing algorithm distinguishes p = q from ‖p−q‖1 ≥ ε with

probability 2/3 using O(max{1ε ,
‖p−m−ε/16‖2/3

ε2
}) samples.

Proof. Recall that s is largest integer such that
∑

i<s pi <
ε
8 . The tester rejects in two cases:

1.
∑

i≥s,i 6=m χi > 4k‖p−m≥s ‖
1/3
2/3

2.
∑

i<sXi >
3
16εk

To prove that this tester works with constant probability, we need to show that we pass both checks in
the case where p = q, and fail at least one check in the case where ‖p− q‖1 ≥ ε. Note when ‖p− q‖1 ≥ ε,
at most ε

2 discrepancy can be in pm. Thus, Ω(ε) fraction of the discrepancy either falls between ps and
pm or below ps. We show when a significant portion of this discrepancy is between ps and pm, case one
rejects, otherwise case two rejects.

• p = q =⇒ Case 1 passes:

The expectation of the tester is
∑

i E[χi] = k2(pi−qi)2

p
2/3
i

= 0 when p = q. The variance is
∑

i V ar[χi] =∑
i
2k2q2i+4k3qi(pi−qi)2

p
4/3
i

= 2k2‖p−m≥s ‖
2/3
2/3. By Chebyshev, the tester is less than 4k‖p−m≥s ‖

1/3
2/3 with prob-

ability 7/8.

• p = q =⇒ Case 2 passes:
The probability we draw

∑
i<sXi elements < s is distributed as Poi(kε8 ) with expectation and

variance εk
8 . The probability this exceeds 3εk

16 is less than 1/8 by Chebyshev for sufficient k.

• ‖p− q‖1 ≥ ε =⇒ Case 2 fails when ‖(p− q)−m<s ‖ ≥ 3ε
8

By assumption ‖p<s‖ < ε
8 and thus ‖q<s‖ ≥ ε

4 . Then the probability we draw
∑

i<sXi elements

< s is distributed as Poi(kε4 ) with expectation and variance εk
4 . The probability this exceeds 3εk

16 is
at least 7/8 by Chebyshev for sufficient k.

10



• ‖p− q‖1 ≥ ε =⇒ Case 1 fails when ‖(p− q)−m≥s ‖ ≥
ε
8 :

Apply the key lemma. Thus, we have that cV ar[χi] ≤ E[χi]
2 for any c and sufficient k. The variance

is minimized when p = q, therefore is at least c2k2‖p−m≥s ‖
2/3
2/3. The key lemma implies expectation is

at least
√

2ck‖p−m≥s ‖
1/3
2/3. By Chebyshev, for sufficient choice of k, the tester is more than 4k‖p−m≥s ‖

1/3
2/3

with probability at least 7/8.

4.5 Lower Bound

Valiant and Valiant show that their tester is optimal by constructing a hard distribution from a distribu-
tion over distributions Qε. The strategy is similar to Paninski’s lower bound: we construct a distribution
q∗ from Qε that is ε-far from p, yet k samples from a random distribution q∗ will be close to k samples
from p via `1. Additionally, like Paninski, Valiant and Valiant choose q∗ to be a random perturbation of
the known distribution. However, to show that k samples from p and k samples from q∗ are close, Valiant
and Valiant rely on the Hellinger distance rather than working with `2 distance.

Definition 12 (Hellinger Distance). The Hellinger distance H(p, q) between two distributions p and q is
the following:

H(p, q) =
1√
2

√∑
i

(
√
pi −

√
qi)2

The Hellinger distance is crucial to the lower bound as it bounds the `1 distance while its square is
subadditive on product distributions. The idea will be to bound the `1 distance by summing over the
squared Hellinger distances per coordinate. The bound relies on the following lemma:

Lemma 13. H(Poi(λ), Poi(λ± ε)) ≤ O( ε
2

λ )

The lemma is proved via properties of the Hellinger distance and Poisson distribution. We omit the
details for conciseness. Valiant and Valiant then use it to prove the main theorem.

Theorem 14. Given a distribution p and εi ∈ [0, pi], draw q∗ from Qε as follows

q∗i = pi ± εi

then normalize q∗ to be a distribution. It takes k ≥ Ω((
∑

i
ε4i
p2i

)−1/2) samples to distinguish p from q∗

with success probability 2/3, and q∗ is min{(
∑

i εi)−maxi εi,
1
2

∑
i εi}-far from p.

Proof. Let pk and q∗k denote p and q∗ after sampling k times. We bound the `1 distance between p and q∗

after k samples via the Hellinger distance. We can then bound the Hellinger distance using its subadditive
property and the previous lemma:

‖pk − q∗k‖1 ≤ H(pk, qk) ≤
√∑

i

H(Poi(kpi), Poi(k[pi ± εi]))2 ≤ kO(
∑
i

ε4i
p2i

)1/2

Thus, if k = o((
∑

i
ε4i
p2i

)−1/2), the distance between pk and q∗k is arbitrarily small.

We next show that p and q∗ are min{(
∑

i εi) − maxi εi,
1
2

∑
i εi}-far. We use the fact that the mass

of q∗ that is removed via normalization is distributed as
∑

i±εi. Thus, the `1 distance is at least as

11



large as sampling from
∑

i εi − |
∑

i±εi|. It suffices to show that |
∑

i±εi| ≤ max{maxi εi,
1
2

∑
i εi} with

probability 1/2.
Let ε1 be the largest εi value. If ε1 ≥ 1

2

∑
i εi, then the randomness of choosing ±ε1 implies |

∑
i±εi| ≤

ε1 with probability 1/2. For the case when ε1 <
1
2

∑
i εi, we consider the first element εj in sorted order

for which it would be possible |12
∑

i<j ±εi|+ εj exceeds 1
2

∑
i εi. Valiant and Valiant show the remaining

elements after ej will yield a sum at most 1
2

∑
i εi with probability 1/2. In either case, |

∑
i±εi| ≤

max{maxi εi,
1
2

∑
i εi}, and thus with probability 1/2, q∗ is min{(

∑
i εi)−maxi εi,

1
2

∑
i εi}-far from p.

Corollary 15. There exists c such that for any ε ∈ (0, 1) and known p, no tester can distinguish p = q∗

from ‖p− q∗‖1 ≥ ε with probability ≥ 2/3 with less than cmax{1ε ,
‖p−m−ε ‖2/3

ε2
} samples.

Proof. Let α be the value for which 1
2

∑
i 6=m min{pi, αp2/3i } = ε. Then, let εi = min{pi, αp2/3i }. We can

verify q∗ and p are ε-far apart:

‖p− q∗‖1 = min{(
∑
i

εi)−max
i
εi,

1

2

∑
i

εi} ≥ min{2ε− ε, ε} = ε

Next, sort the pi in ascending order and consider the largest s where
∑

i<s pi ≤ ε. For all pi ≥ ps, it

can be shown that that min{pi, αp2/3i } = αp
2/3
i . This allows us to establish the following inequality:

α
m−1∑
i=s

p
2/3
i =

m−1∑
i=s

min{pi, αp2/3i } ≤
∑
i 6=m

min{pi, αp2/3i } ≤ 2ε

which implies α ≥ 2ε‖p−m≥s ‖
−2/3
2/3 . Thus, with this bound on α, we can show the number of samples

needed to distinguish q∗ and p is at least Ω(
‖p−m≥s ‖2/3

ε2
). Using the previous lemma:

k ≥ Ω((
∑
i

ε4i
p2i

)−1/2)

= Ω((
∑
i 6=m

min{pi, αp2/3i }4

p2i
)−1/2) εi = min{pi, αp2/3i }

≥ Ω((α3
∑
i 6=m

min{pi, αp2/3i })
−1/2)

= Ω((α3ε)−1/2)
1

2

∑
i 6=m

min{pi, αp2/3i } = ε

≥ Ω((ε4‖p−m≥s ‖
−2
2/3)

−1/2) α ≥ 2ε‖p−m≥s ‖
−2/3
2/3

= Ω(
‖p−m≥s ‖2/3

ε2
)

The result implies that Valiant and Valiant’s tester requiring Θ(
‖p−m≥s ‖2/3

ε2
) samples is tight.
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5 Appendix

5.1 A

Tester Strategy Complexity Notes

Goldreich and Ron Uniformity Collisions O( n
ε4

)

Batu et al. Identity Collisions O(n logn
εO(1) )

Paninski Uniformity Coincidences Θ( n
ε2

) ε = Ω(1/n1/4)

Valiant and Valiant Identity χ2-test Θ(
‖p‖2/3
ε2

)

5.2 B

We can show Ω(
√
n) samples are required for uniformity testing. Consider the distribution:

q =


1
n , ∀i ≥ 2εn
2
n , ∀i ≤ εn
0, otherwise

It is easy to verify that q is at least ε far from uniform. With o(
√
n) samples and assuming ε < 0.5,

we don’t expect to see any collisions when sampling from the uniform distribution and q:

E[# collisions] = ‖U‖22
(
o(
√
n)

2

)
=

1

n
o(n) = o(1)

E[# collisions] = ‖q‖22
(
o(
√
n)

2

)
<

2

n
o(n) = o(1)

In either case there are no collisions on expectation, and thus Ω(
√
n) samples are required.
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