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1 Introduction

The CCLS has an ongoing project to explore and investigate the issue of alarm
fatigue in physiological monitoring systems in hospitals, and to approach the
problem of alarm fatigue from the perspective of machine learning. Alarm
fatigue occurs when people are exposed to an excessive number of alarms, often
resulting in desensitization to alarms and missed alarms [1]. While alarm fatigue
has been studied in a very wide context, including nuclear control settings, the
problem is especially relevant in the medical domain, where estimates state that
over 72%-98% of all alarms are actually false.

There have been occasions when alarm fatigue was attributed as a direct
cause of patient’s death [2]. A survey by Healthcare Technology Foundation
found that one in five respondent hospitals identified an avoidable adverse event
due to alarms in the past two years [3]. ECRI Institute has ranked alarm fatigue
as one of the top patient safety issue in its “Top 10 Technology Hazards” list
ever since the list’s inception [4].

2 Data Sets

2.1 Alarm Data

Columbia Neuro-ICU data set was extensively used in this project. The data set
consisted of 489 patient admissions spanning from 2009-2013 in the Columbia
Neuro-ICU. It consists of roughly 1 million alarms, 5,000 patient days, and 7
types of complications.

In a 2014 study, [5] identified three main types of alarms in intensive care
units: equipment alarms, parameter alarms, and crisis alarms. We add an
additional category, advisory alarms, in order to distinguish between the most
life-threatening alarms and those that are less dangerous.

Crisis alarms include ASYSTOLE, VFIB/VTAC, VTACH, and VBRADY
alarms. In total there were 1929 crisis events, consisting of approximately
0.2% of the data. Advisory alarms include other actionable alarms that do
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not have Hi/Lo parameter settings, such as BRADY, APNEA, VT > 2, R
ON T, TRIGEMINY, COUPLET, BIGEMINY, PAUSE, TACHY, PVC, and
ARRHY SUSPEND. These were 110135 advisory events, consisting of roughly
11.5% of the data. Parameter alarms are Hi/Lo alarms that go off when oxy-
gen, heart rate, blood pressure, and other leads are too high or low. There were
700313 parameter events, consisting of 73.3% of the data set. Finally, equip-
ment alarms signify malfunctioning technical equipment in the intensive care
unit. There were 127665 equipment events, consisting of roughly 13.4% of the
data set. Approximately 1.6% of the alarms went unclassified.

2.2 Physiological Data

In addition to the alarm data, we also used physiological data from the NICU
in order to corroborate this data set. We had physiological data for 102 of
the 489 patients, which consisted mostly of heart rate levels. These levels are
measured in five second intervals during the patient’s entire stay at the ICU.
Unfortunately, much of the data set is empty, and improving these physiological
records should be a priority in the future.

Joining the physiological data and alarm data allows us to associate alarms
with specific heart rate levels. In particular, there were 337479 events that we
were able to match with physiological data. We provide confidence intervals for
the mean heart rate of heart related crisis, advisable, and parameter alarms.

Alarm Count HR 95% CI

ASYSTOLE 303 (38.61, 45.67)
VFIB/VTAC 43 (72.13, 111.77)
BRADY 8354 (50.27, 50.51)
APNEA 877 (80.98, 82.91)
V TACH 313 (102.18, 109.87)
VT > 2 814 (91.88, 95.88)
V BRADY 17 (58.43, 74.27)
COUPLET 2833 (87.59, 89.26)
BIGEMINY 743 (79.69, 82.26)
PAUSE 655 (52.02, 55.46)
TACHY 10470 (115.11, 115.74)
PVC 1895 (89.61, 91.48)
ARTIFACT 39 (69.01, 76.06)
HR HI 8252 (123.29, 123.85)
HR LO 7556 (47.06, 47.32)
ARRHY SUSPEND 1300 (86.93, 88.98)

As is expected, many of the most important alarms correspond with low or
high heart rate levels. HR Hi and HR Lo alarms are set to go off when the
heart rate reaches unhealthy levels, thus the low variance in heart rate levels
for these alarms is unsurprising. Other alarms, such as VFIB/VTAC, do not
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rely on heart rate levels, and thus heart rate data can be used to corroborate
whether or not these alarms are true-positives and actionable.

For some patients, we also have blood pressure levels from the physiological
data. This data is much more incomplete, but is useful in determining false
positives vs true positives in some alarms.

3 Reducing Nuisance Parameter Alarms

There are several solutions for reducing the number and frequency of param-
eter alarms in the NICU. [5] offers several key insights, including allowing re-
adjustment settings for parameter alarms. Using heart rate data, we note that
re-adjustment settings may be necessary for heart rate alarms, where Hi HR
and Lo HR alarms can compose over 30% of alarms for patients that have low
or high mean heart rates.

The following two graphs show the proportion of HR Hi alarms vs patient
mean HR and proportion of HR Lo alarms vs patient mean HR. We can see
from Figure 1 and Figure 2 that the lack of re-adjustment settings can lead to
HR parameter alarms dominating a patient’s alarm data.

Figure 1: Example of Nuisance HR Hi alarms in some patients. The y-axis is
% of HR Hi alarms, x-axis is patient’s mean heart rates, n=102.

In a 2011 study, [6] suggested adding delays to reduce the number of nuisance
parameter alarms. We used this strategy with the NICU data with several
different delay intervals. We assume that a delay period begins once an alarm
finishes. If an alarm of the same type begins during the delay period for the
same patient, we remove this alarm. Figure 3 shows how we reduce the number
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Figure 2: Example of Nuisance HR Lo alarms in some patients. The y-axis is
% of HR Lo alarms, x-axis is patient’s mean heart rates, n=102.

of parameter alarms with a variety of delay conditions. In fact, even a delay of
ten seconds cuts down the number of parameter alarms by over 15%.

Figure 3: Example of delay decreasing the number of parameter alarms. The
y-axis is the number of parameter alarms, x-axis is the number of seconds of
delay.
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4 Reducing Nuisance Crisis Alarms

4.1 Introduction

We believe that it is possible to use machine learning techniques to differentiate
true positive crisis alarms and false positive crisis alarms. In order to do so, we
must create a labeled data from alarm data and then train a classifier that can
distinguish actionable from non-actionable crisis alarms. Defining features and
labels for crisis alarms is an attainable task, but may require more data as well
as medical knowledge.

4.2 Labeling

In [5], we get several standards for labeling true positives and false positives for
a variety of alarms including ASYSTOLE, VFIB/VTAC, VTACH, PAUSE, and
VBRADY.

• Examine electronic medical records (EMR) and confirm true positive alarms
predicted patient complications.

• Confirm the correctness of crisis alarms by examining other leads, such as
Pulmonary Artery pressure.

The physiological data occasionally includes the following three blood pres-
sure measures: systolic pressure, diastolic pressure, and mean arterial pressure.
Examining changes in blood pressure is helpful for teasing out true and false
positives, but a medical professional should be consulted in order to confirm
that the labels are correct.

Ultimately, because each alarm has different criteria for proving the presence
of a true positive, it may be the case that each crisis alarm requires its own
labeled data set and classifier. We will focus primarily on the ASYSTOLE
alarm and the problem of distinguishing ASYSTOLE false and true positives.
This is because an ASYSTOLE is classified as one of the most lethal crisis
events, and thus an event in which false positives are particularly harmful.

The ASYSTOLE alarms sounds when the heart rate of a patient is at or
near zero for 4-5 seconds. Unfortunately, sometimes these heart rate measures
can be faulty. When blood pressure measures are present, false positives can be
detected somewhat easily. Figure 4 bottom gives an example of a false positive.
Notice that the heart rate dramatically drops with no change in blood pressure
levels. Figure 4 top gives the example of a true positive. Notice that blood
pressure levels reflect the change in pressure after the heart stops beating.

Unfortunately, while blood pressure levels can help distinguish true positives
from false positives, the incomplete data means that most ASYSTOLE alarms
are not accompanied by blood pressure levels.
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Figure 4: Top is an example of a false positive ASYSTOLE alarm, while bottom
is an example of a true positive. The y-axis measures parameter levels and x-axis
measures seconds. Heart rate measurements are plotted in red, systolic pressures
are in yellow, diastolic pressures are in cyan, and mean arterial pressures are in
magenta.

4.3 Feature Representations

There are a variety of features that we can use to predict whether ASYSTOLE
alarms are actionable. Heart rate, blood pressure, and other physiological time-
series data are immediately the best candidates. To turn time-series data into
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features, we can use the 60 second window prior to the alarm as the epoch length,
and use the following statistical techniques as features (some drawn from [7]):

• RMSSD: Root mean square of successive difference between adjacent HRs
in the window.

• SD: Standard deviation of HRs in the window

• MAX: Maximum HR in the window

• MIN: Minimum HR in the window

• MEAN: Average HR in the window

• MEDIAN: Median HR in the window

We can use the same statistics to add features for systolic blood pressure,
diastolic blood pressure, and mean arterial pressure in the 60 second window.
Other potential features could be patient specific, and perhaps take into account
the risk score of a specific patient developing a life-threatening condition. In
addition, previous alarm data and blood pressure levels can also be used as
features (when present).

4.4 Techniques

Assuming we have a labeled data set, the next problem is to choose a Machine
Learning technique that works well. This is essentially a two-class classification
problem that can potentially be unbalanced depending on the proportion of
false positives. There are several algorithms that excel at classification under
these parameters:

• Boosted Decision Trees: Decision trees typically perform well on biased
data sets. Boosted decision trees in particular can achieve high accuracy
with relatively little training time.

• SVM: For many crisis alarms, the data set is only slightly unbalanced,
making SVMs a feasible classifier. In addition, using SVMs in conjunc-
tion with under-sampling techniques or synthetic minority over-sampling
techniques also could fix balancing issues.

4.5 Aside: Anomaly Detection and Smart Alarms

Another possible way to combat alarm fatigue is to create more robust, ”smarter”
alarms. Rather than respond to a certain threshold, these alarms could use ma-
chine learning techniques to analyze and detect anomalies in physiological data.
Two techniques in particular are Symbolic Aggregate approXimation (SAX),
which discretizes the input time series into a string, and Sequitur, which in-
duces a context-free grammar (CFG) from it. These techniques in conjunction
can be used to establish rules for heart-rate data and then find anomalies.
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GrammarViz 3.0 is a program for time series exploration and analysis, that
implements both SAX and Sequitur [8, 9]. We installed this software and were
able to discretize the heart-rate levels of patient patient id = 2222. From
this discretization, the program then attempts to detect heart-rate anomalies.
Figure 5 shows the results of the anomaly detection algorithm.

Figure 5: Results of GrammarViz 3.0 anomaly detection algorithm on patient
id = 2222.

Without medical knowledge, it is difficult to determine the accuracy and
feasibility of the anomaly detection algorithm. Ideally, one should be able to
train the algorithm on a healthy heart-rate, and then use anomaly detection in
real-time an unhealthy patient. GrammarViz 3.0 does not currently offer this
possibility, but perhaps this could be a project for implementation in the future.
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